Using GPS reflections to monitor soil moisture and vegetation

xenon.colorado.edu/reflections/GPS_reflections/PBO_H2O.html

Eric Small, Geological Sciences, CU Boulder

Kristine Larson, Aerospace Engineering, CU Boulder

John Braun (UCAR/COSMIC) and others

Funding and support

NSF-ATM, NSF-EAR, NASA UNAVCO Sevilleta and Niwot LTERs

Soil moisture fluctuations Marshall, Colorado

Larson, Small, Gutmann, Braun, Zavorotny, and Bilich, GPS Multipath and Its Relation to Near-Surface Soil Moisture Content, *IEEE J-STARS*, 2010

Use existing GPS receivers in PBO network to study soil moisture, vegetation, snow

Use NSF's PBO Network

- Extensive network(s) exists
- Data freely available
- Same frequency as SMAP
- "large" sampling footprint
- Good site distribution
- Antennas suppress multipath
- Sensitivity to >1 variable
- Site conditions vary

9 test sites: Identical GPS and hydrology infrastructure and gravimetric and vegetation sampling

ISST Site A: 2010

Comparison to optical remote sensing

Small, E.E., K.M. Larson, and J. J. Braun, Sensing Vegetation Growth Using Reflected GPS Signals, Geophys. Res. Lett. 37, L12401, doi:10.1029/2010GL042951, 2010

Foothill, Idaho P422

p422

Sensing vegetation: winter wheat site

Niwot Ridge GPS Snow Experiment

Status of products

Vegetation

Time series of relative vegetation amount Scaling to absolute amount (kg m⁻²)

Soil Moisture

Rank SNR data, estimate errors Scale to absolute soil moisture