Soll Moisture Active Passive (SMAP)
Value Added Data Products

Paul R. Houser, CREW/GMU

SMAP GOAL: Map global soil moisture and freeze/thaw state to meet requirements for water, energy and carbon cycle
i__ sciences, weather and climate applications, and natural hazards decision support systems (Decadal Survey).

cience questions: How is the water cycle changing? Are northern forests taking up or releasing carbon? Etc...

y applications: Enhance accuracy of weather forecasts. Monitor floods and droughts. Track and predict spread of
water-borne diseases. Enhance agricultural productivity. Aid in military mobility.

Value Added Data Products: SMAP will measure surface microwave emission and backscatter every 3

____days, so methods to merge the active/passive signal, extend the surface information to the root zone,

B downscale in time & space, and produce subsequent hydrologic and carbon fluxes (Runoff, Evaporation,
etc.) are required to meet science and application needs
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SMAP: Applications |
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SMAP: value-Added Data Product Approach : %
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Value-added data products through integration of models and multi-platform measurements _

.Merge multi-source and multi-resolution data (GPM, MODIS, GPS, etc.). ;
i Account for missing data, and fill in spatial/temporal gaps.
.Use noisy high-res radar to downscale course radiometer.
.Optimally combine SMAP active and passive observations (radiance assimilation).
.Downscale hydrologic information to be more useful for applications (obs overlap).
.Extend SMAP information to soil profile and to other hydrologic states (through modeling).

Improvement
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Land Surface Observation and Modeling

Reflected and
Longwave
Radiation

Transpiration

= Forcing o f A0 Fluxes
*Precipitation ¥ ; Energy *Evapotranspiration
*Wind ‘ Balance|  .gensible Heat Flux
~ Humidity £ .3 *Radiation
*Radiation § 23 -Ru_noff
+Air Temperature Radiation ﬁ{ *Drainage

E-Parameters
~ +Soil Properties Drainage
*Vegetation Properties o Rediation forcing -
*Elevation & Topography Soil Moisture o Vegetatio
% o ¥l S ) |R'
% *Subgrid Variation e States
«Catchment Delineation *Soil Moisture
*River Connectivity *Temperature
Ultra *SNOwW
Radio waves Microwaves Infrared Violet X-rays  Gamma «Carbon
\_/_\_//\/ /WUUWW *Freeze/Thaw
*Nitrogen
Wm0 Im Wem  3m  Oem  300um 3c-,'.m ‘3;:rn 0 Im o Q3nm  0.0%m 0003 -Biomass

7. CR EW Wavelengths
\§ o Paul R. Houser, 13 July 2007, Page 4



:
oy
FOPEXFossidon Landeatr -:-'H

N
>
e &
= S
e > QUJ @
= DEM Vis/IR Végetatlon Microwave Soil Microwave 5 o
= Moisture  Precipitation 2.
...... J (&)
D
| —
=)
2 @D .« Total
= . Variabilit
= . y
% Precipitation-
Induced

| |
1m 10 m 100m 1km  10km 100 km
& crew Scale

Paul R. Houser, 13 July 2007, Page 5



MAP: soil Moisture Data Assimilation g5
Data Assimilation merges observations & model predictions to provide a superior state estimate. =

k % = dynamics + physics+ Ax @ 4DDA [ Model J
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;

emotely-sensed hydrologic state or storage observations (temperature, snow, soil moisture) are
integrated with a land surface model prediction

*Errors in land model prediction result from:
: *Initialization error.

*Errors in atmospheric forcing data.
*Errors in LSM physics (model not perfect).
*Errors in representation (sub-grid processes).

%7"\ *Errors in parameters (soil and vegetation).
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Retrieving soil moisture profile using data assimilation
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Retrieving soil moisture maps using remote sensing
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An QSSE for the HYDROS soil moisture mission %
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An OSSE for the HYDROS soil moisture mission
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An OSSE for the HYDROS soil moisture mission
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SMAP Value Added Data Products

SMAP Value Added Data Products:

- merge the active/passive signal

- extend the surface information to the root zone

- downscale in time & space

- produce subsequent hydrologic and carbon fluxes (Runoff, Evaporation, NPP, etc.)

Readiness:

-Relevance to science and applications are clear.

- Modeling and assimilation tools are mature and have been demonstrated.
- Hydros OSSE studies demonstrate SMAP specific value-added products.

Issues:
- Need to integrate freeze/thaw information in L4 model analysis
- Need additional field studies to optimize/calibrate algorithms for various landscapes.
- Need to work with end-users to optimize integrated system solutions.
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