4<sup>th</sup> SMAP Cal/Val Workshop Pasadena, CA November 6, 2013

NASA

# **ComRAD Update**

Peggy O'Neill / NASA GSFC Alicia Joseph / NASA GSFC Mike Cosh/USDA Sab Kim / JPL Roger Lang / GWU



- APEX12 Objective to obtain a continuous active/passive L band data set over an entire growing season for use in refining SMAP algorithms
- Use ComRAD truck-mounted SMAP simulator instrument system
- Baseline SMAP L2 soil moisture data products include:
  - -- radar-only SM at 3 km resolution (L2\_SM\_A)
  - -- radiometer-only SM at 40 km resolution (L2\_SM\_P)
  - -- combined radar/radiometer SM at 9 km resolution (L2\_SM\_AP)
- Possible analyses of APEX12 data:
  - -- improvements to radar data cubes for L2\_SM\_A
  - -- better parameterizations of tau-omega model for L2\_SM\_P
  - -- additional validation of β parameter and RVI for L2\_SM\_AP



### **ComRAD Active / Passive L Band Instrument System**



Frequency: 1.403-1.424 GHz L radiometers; 1.25-1.3 L band radar

Polarization: dual pol radiometers (LH & LV) quad pol L radar (HH,VV,VH, HV)

Antenna: 1.22 m parabolic dish w/broadband feed

Incidence Angle Range: 0° - 175°

Azimuth Angle Range: 0° - 300° autonomous 0° - 360° manual

**Platform: 19-m hydraulic boom truck** 

Power: standard AC line power

TIR sensor installed for scene temperature

Can accommodate CropScan VISIR sensor



Deployed Over Corn Stubble During SMAPVEX08 (Oct. 2008)



## ComRAD L-band Active/Passive Measurements Summer 2012 [APEX12]



- Vegetation Types: Corn and Soybeans planted
- Duration: June 1 to late October, 2012 (planting to harvest)
- L-band Active/Passive data were acquired at a look angle of 40<sup>0</sup> from nadir at both horizontal & vertical polarization
- Radar 120<sup>0</sup> azimuthal scan in 4 min.
  (60 independent measurements)
- Radiometer measurements every 15° in azimuth in a span of 120° in 20 min.
  (7 independent measurements)
- Plant architectural measurements of stalk and leaf sizes, orientations, densities, and VWC on each field (weekly)
- In situ soil moisture, soil temperature & leaf wetness measurements made (also TIR measurement from ComRAD)
- CropScan visible/IR spectral data (handheld)







### **Example of ComRAD Time Series Data**

August 27 – September 1, 2012











- Mike Cosh / USDA delivered all ground truth data to JPL:
  - -- Soil Moisture / Soil Temperature from 10 installations at 5 cm depth Hourly
  - -- Precipitation Hourly
  - -- Vegetation Water Content / Biomass / Physical parameters sampled on a weekly and twice a week repeat
  - -- Estimated daily vegetation water content estimates for each sensor position during the growing season from 2 m resolution imagery

### • Mehmet Kurum / GSFC delivered all ComRAD microwave data to JPL:

#### -- RADIOMETER master files:

O312SOY.40R2 : contains individual azimuth measurements over soybean field O312SOY.40P2 : contains average of seven independent azimuth measurements over soybean field O312CRN.40R2 : contains individual azimuth measurements over corn field O312CRN.40P2 : contains average of seven independent azimuth measurements over corn field

#### -- RADAR master files:

- SOY12.40 : contains average of up to 60 (sixty) independent measurements within about 120 degrees radar sweep over soybean field
- CRN12.40 : contains average of up to 60 (sixty) independent measurements within about 120 degrees radar sweep over corn field

#### -- ANGLE file

#### -- README file



### **Data Cube Status**



| IGBP class          | Mv range<br>covered? | VWC range<br>covered? | Can<br>APEX14<br>help? | Comment                            |
|---------------------|----------------------|-----------------------|------------------------|------------------------------------|
| Evergreen needle    | Δ                    | Δ                     | no                     | CanEx                              |
| Evergreen broadleaf | Δ                    | Δ                     | no                     | CanEx                              |
| Deciduous needle    | Δ                    | Δ                     | no                     | CanEx                              |
| Deciduous broadleaf | 0                    | Δ                     | maybe                  | CanEx, SMAPVEX12                   |
| Mixed forest        | Δ                    | Δ                     | no                     | CanEx                              |
| Closed/Open shrub   | Δ                    | Δ                     | no                     | TarraDowns                         |
| Woody Savanna       | ∆ ?(Tonzi)           | ∆ ? (Tonzi)           | maybe                  | TarraDowns. Dara found an anomaly. |
| Savanna             | Δ                    | Δ                     | no                     | SMAPEx                             |
| Grassland           | 0                    | Δ                     | yes                    | SGP99, CLASIC, CanEx, SMAPVEX12    |
| Cropland: wheat     | 0                    | 0                     | yes                    | CLASIC, SMAPVEX12                  |
| corn                | 0                    | 0                     | no                     | SMEX02, APEX12, SMAPVEX12          |
| soybean             | 0                    | 0                     | no                     | SMEX02, APEX12, SMAPVEX12          |
| rice                |                      |                       |                        | Not applicable (flooded)           |
| Crop/pasture mix    |                      |                       |                        | Not applicable (too rare)          |

O: yes,  $\Delta$ : partly when at least one value within the entire range is observed. Note: 'roughness range' is not evaluated here because covering its range is impossible.





- address data cube needs by measuring winter wheat and timothy grass (hay)
- proposed start is early spring 2014, continuing through harvest [winter wheat planted 10-29-13]
- ComRAD updates over winter (in addition to some component checks/replacements):
  - -- convert hardware signal path and measurement programs to new E5072A VNA (more VNA power should increase cross pol response to short vegetation)
  - -- antenna waveguide feed being redesigned to reduce small amounts of cross talk between polarizations
  - -- new hydraulic valve in truck for more consistent rotational speed







# BACKUP