


Workshop Overview

Cal/Val Workshop Agenda-Day 3

Thursday (November 7)			
	L2-L4 Topics		
0815	Triple Co-location and Sparse Networks	Crow	
0845	Model-based Validation of Soil Moisture Products	Crow	
0915	Discussion		
0930	Break		
	Phase 2 Cal/Val Rehearsal	Yueh (Lead)	
0945	Scope, Roles, and Responsibilities	Yueh	
1000	L1 Plan	Spencer	
1020	L2-L4 Algorithms Plan	Dunbar	
1045	L2-L4 Validation Plan	Colliander	
1110	Science Data System Plan	Weiss	
1130	Schedule and Summary (Discussion)		
1200	Workshop Summary and Actions	Jackson/Yueh/Entekhabi/Njoku	
1300	End		

L2-L4 Validation Methodologies

Methodology	Role	Constraints	Resolution
Core Validation Sites	Accurate estimates of products at matching scales for a limited set of conditions	In situ sensor calibrationLimited number of sites	In Situ TestbedCal/Val Partners
Sparse Networks	One point in the grid cell for a wide range of conditions	In situ sensor calibrationUp-scalingLimited number of sites	In Situ TestbedScaling methodsCal/Val Partners
Satellite Products	Estimates over a very wide range of conditions at matching scales	 Validation Comparability Continuity	Validation studiesDistribution matching
Model Products	Estimates over a very wide range of conditions at matching scales	ValidationComparability	 Validation studies Distribution matching
Field Campaigns	Detailed estimates for a very limited set of conditions	ResourcesSchedule conflicts	Airborne simulatorsPartnerships

SMAP Cal/Val Phase 2 Rehearsal Goals

- Demonstrates the use of the operational environments and facilities and all of the tools required for the cal/val effort
 - Effective use of tools in an operational setting
 - Tools function in the operational environment
 - Tools operate on selected input data sets
 - Tools generate anticipated output
 - Tools run on same hardware that will be used during cal/val
 - Effective use of the available data
 - Incorporates SMAP data products
 - Incorporates validation data sets
 - Incorporates QA products and analysis products
 - Effective use of communication channels and process tools
 - Employ all established means that the team will use to communicate issues and results and exercise tools for changes

Phase 2 Cal/Val Rehearsal Procedures

Prerequsites

- Mission hardware is configured for cal/val
- Data repositories are configured for cal/val
- Software tools and applications are configured for cal/val
- Software tools and applications reside where they will be used during cal/val

Exercises

- Schedule specific time periods in May/June 2014 to run test cases
- Assign team members to execute specific parts of the exercise
- Run all tools with available data with resources intended for mission use
- Employ all report mechanisms and repositories
- Evaluate results and, if necessary, modify procedures accordingly
- Some exercises will test the use of procedures and tools under anomalous conditions
- Demonstrate mission readiness in time for ORR in August

Phase 2 Cal/Val Rehearsal Planning

- Generate cal/val use cases
 - The full set of use cases covers all planned cal/val activities
 - Use cases will ensure that
 - The data storage plan provides necessary data sets
 - The tool development plan covers necessary functions
- Document procedures that are common to all cal/val activities.
 - Those procedures will specify:
 - Facilities in use and how to access them
 - Location of various data sets
 - Communication methods the cal/val team will use to share information and prepare reports
- Document cal/val procedures that are specific to each use case.
 - Those procedures will specify:
 - Prerequisite conditions for each use case
 - Specific sequence of activities
 - Alternatives for expected anomalous conditions

Phase 2 Cal/Val Rehearsal Misc.

- What will be the SMAP data simulator for each product: including L1
- How will DAART operate? Will there be a sub-group for L2 SM?
- The in situ activities before and during Phase 2 should be designed so that by the end of P2
 - All sites that will be used in the CV Phase are integrated and evaluated
 - Core sites should be selected (after the exercise)
 - Sparse network sites should be quality controlled to identify the subset that will be used in CV
 - Scaling approach defined for each site, network, and product
- If modeling will be used as a scaling tool, this needs to be ready for Phase 2
- Address satellite and model product comparisons

Cal/Val Workshop Agenda-Day 3

Thursday (November 7)				
	L2-L4 Topics			
0815	Triple Co-location and Sparse Networks	Crow		
0845	Model-based Validation of Soil Moisture Products	Crow		
0915	Discussion			
0930	Break			
	Phase 2 Cal/Val Rehearsal	Yueh (Lead)		
0945	Scope, Roles, and Responsibilities	Yueh		
1000	L1 Plan	Spencer		
1020	L2-L4 Algorithms Plan	Dunbar		
1045	L2-L4 Validation Plan	Colliander		
1110	Science Data System Plan	Weiss		
1130	Schedule and Summary (Discussion)			
1200	Workshop Summary and Actions	Jackson/Yueh/Entekhabi/Njoku		
1300	End			

Next Activities

- What needs to be done with CV Partners
 - 1. MOU
 - 2. Test data set evaluation by SMAP
 - 3. Data transfer operational
 - 4. QC of individual sites
 - 5. Rehearsal feedback and action
 - 6. Calibration
 - 7. Scaling for multiple resolutions
 - 8. Field experiments
- Making sense of statistical CV and Triple co-location
 - Sparse
 - Core
 - Satellite and model products
- Should we establish that if a site does not participate in Phase 2 then we will not use the data in the CV Phase?
- What can we tolerate in terms of latency?
- Between now and Phase 2
 - ADT and CV Partners-continue to add and advance sites
 - CV Partners: address the issues of calibration, referencing, and scaling.

Message to CV Partners

- In situ data are used for assessment of products
- This comparison provides error estimates and a basis for modifying algorithms and/or parameters
- We want to believe that the scaled soil moisture provided from each site is close to the true average 0-5 cm soil moisture (or other variable)
 - What convinces us? Evidence that
 - Sensors are calibrated
 - Relationship established between the sensor measurement and the satellite reference (i.e. 0-5 cm soil moisture)
 - A reasonable basis for the scaling function (i.e. n is large)
- If we are convinced of the above, the cause of the difference can be assumed to be in the satellite retrieval (not the in situ)

Message to ADT

- In situ data are one of several methodologies used for assessment of products
- Comparisons of in situ and algorithm products provides error estimates and a basis for modifying algorithms and/or parameters
- If we are convinced that the in situ data is reliable, the cause of the difference can be assumed to be in the satellite retrieval
- You can't cherry-pick data; the basis for using or rejecting in situ data must be established a priori and not after comparison

4th SMAP Cal/Val Workshop: Objectives

- Closure on Phase 1 of the Cal/Val Rehearsal and lessons learned.
- Increased engagement of the Cal/Val Partners and provide them with a better understanding of the Project needs.
- Feedback on the L1 Cal/Val Plan
- Establish a relationship with the L-band inter-calibration working group
- Feedback on the plans for post-launch field campaigns
- Feedback on the Phase 2 Cal/Val Rehearsal plan