National Aeronautics and Space Administration

Soil Moisture Active Passive Mission SMAP

Jet Propulsion Laboratory California Institute of Technology

Algorithm Refinement Testing Cal/Val Rehearsal 2 Scott Dunbar Jet Propulsion Laboratory

4th Cal/Val Workshop

Pasadena, CA November 5-7,

© 2013. California Institute of Technology. Government sponsorship acknowledged.

- Exercise the capabilities of the Research & Analysis (R&A) and OASIS environments for doing algorithm parameter and software updates during Cal/Val.
 - R&A: Validation, parameter/software updates, small-scale reprocessing to test
 - OASIS: Large-scale reprocessing to make updates available to DAART
- Use existing contemporary data sources for realistic validation tests
 - SMOS Tb at 40 deg incidence angle, reformatted to SMAP L1C_TB
 - Aquarius Tb & radar sigma0
 - PALSAR2 (if available)
 - Glosim radiometer & radar simulations based on contemporary LSM data; can produce controlled anomalous data for discovery & analysis by DAART
- Main algorithm refinement tasks
 - Algorithm performance analysis
 - Algorithm parameter & threshold optimization
 - Bias determination/correction
 - Forward model optimization

Experiment/objective	Analysis	Data required	Environments
Demonstrate consistency with passive and active/passive products	Variation of input parameters & datacube biases to optimize consistency	GloSim radar data; At least one 8-day cycle (117 orbits); At least 10 runs of L2 and L3 SM_A.	OASIS (processing) R&A (analysis)
Identify areas where heterogeneity effects are severe	Analysis of error performance vs landcover heterogeneity.	GloSim radar data; 4 runs of GBTS (35 days), L2/L3_SM_A (8 days)	OASIS (processing) R&A (analysis)
Analysis of L2_SM_A algorithm performance and accuracy	Analyze spatial and temporal patterns of L2_SM_A errors; identify causes; modify algorithm/input data	GloSim radar data; 5 runs of L2/L3_SM_A (at least 8 days)	OASIS (processing) R&A (analysis)
Forward model (datacube) refinement	Construct/refine data cubes using available data	R2: PALSAR HH and UAVSAR data; SMAP data post-launch.	R&A (analysis)

Experiment/objective	Analysis	Data required	Environments
Survey brightness temperature anomalies (residual RFI, non-RFI warm bias) in L1C_TB	RFI: Global maps of (TBH- TBV), feedback to L1 about RFI mitigation performance Warm bias: Collocate SMAP/SMOS/AQ Tb over homo-geneous ocean/ice/forest.	SMOS40 and Aquarius H,V Tb on 36km SMAP grid (L1C_TB format)	R&A (some processing, analysis)
Algorithm performance & validation, baseline and option algorithms	Evaluation of retrieval errors at core sites, triple-collocation for sparse network sites; errors vs. landcover and other ancillary inputs	GloSim and/or SMOS40 Tb data processed to L2_SM_P	OASIS (processing) R&A (analysis)
Forward model parameter refinement	Optimize tau-omega model parameters (b,h,ω) using available data time series	GloSim and/or SMOS40 Tb data processed to L2_SM_P	R&A (analysis)

Experiment/objective	Analysis	Data required	Environments
Algorithm performance & validation	Evaluation of retrieval errors at core sites, triple- collocation for sparse network sites; errors vs. landcover and other ancillary inputs	L2_SM_AP outputs derived from GloSim L2_SM_A radar data, GloSim or SMOS40 Tb data processed to L2_SM_P	OASIS (processing) R&A (analysis)
Active-passive disaggregation algorithm parameter refinement (beta, gamma)	Regression of aggregated sigma0 and Tb to re- determine parameters; optimize temporal windows	GloSim L2_SM_A radar data; GloSim or SMOS40 Tb data processed to L2_SM_P	OASIS (processing) R&A (analysis)
Forward model parameter refinement	Optimize tau-omega model parameters (b,h,ω) using available data (coordinate with L2_SM_P)	GloSim or SMOS40 Tb data processed to L2_SM_P	OASIS (processing) R&A (analysis)

Experiment/objective	Analysis	Data required	Environment
Assess performance of L3_FT and L3_SM (FT flag) retrievals at core sites	Collocation with core sites; analysis of landcover, Tsoil, and Tair sensitivities	GloSim radar data processed to L3_FT_A and L3_SM_A with "pre-launch" (old Glosim) and updated FT parameters	OASIS (processing) R&A (analysis)
Re-parameterize FT algorithm reference states & thresholds using "contemporary" data	Starting from January data, build up new reference states and threshold maps, compare with "pre-launch" parameters.	GloSim radar data; Aquarius radar data @36km?	OASIS (processing) R&A (analysis)
Assessment of classification accuracy over boreal and global domains for 6-month period (Jan- June) including rehearsal	Look at classification skill during thaw transition period as well as average over full time period; does accuracy improve with updated parameters?	GloSim radar data processed to L3_FT_A and L3_SM_A with "pre-launch" (old Glosim) and updated FT parameters	OASIS (processing) R&A (analysis)

Data Simulation Approach for Rehearsal 2

- "NRT" GloSim based on contemporary model products (GMAO, ECMWF?)
 - GloSim produces simulated L1B_TB and L1C_S0 radiometer and radar data using SMAP orbit, instrument noise models, land surface models, and static ancillary inputs to the respective Tb and sigma0 forward models.
 - Run orbit-by-orbit as the dynamic model data becomes available on SMAP TB
 - Change of input SM, Tsoil fields requires minor modifications to existing radiometer and radar simulations used for algorithm development since 2009.
 - Simulation allows us to control the instrument noise characteristics & biases injected into the sensor data.
 - Level 1 data are converted on the back-end to HDF5, ready for input to L2/L3 processing.
- Alternative approach is to provide "true" forward sensor measurements from GloSim to Level 1 radiometer and radar teams
 - Revert (as far as possible) sensor measurements to raw "counts", including noise and anomalies – try to get close to end-to-end test.
 - Run the reverted data back through the L1B_TB and L1C_S0 processors to produce HDF files directly.
 - Introduction of known anomalies, biases, and "RFI" by L1 teams in blind test datasets, to be "discovered" by DAART during rehearsal.

- Noise-free (closed-loop) test
 - Set instrument noise to zero for radiometer and radar
 - Input geophysical "truth" should be reproduced by retrieval processing --(if not, why not?)
 - Small (~8-day cycle or less) set of data from standard GloSim codes
- Data with nominal instrument noise models (no anomalies/biases)
 - 6-12 month standard GloSim data set
 - "NRT" GloSim data set generated during rehearsal
- Data with calibration biases & anomalies (made from GloSim+L1)
 - Use to determine quantity of SMAP data that will be required to assess/correct biases
 - Use to test ability to detect anomalies (excess RFI, pointing errors, etc.) in downstream processing

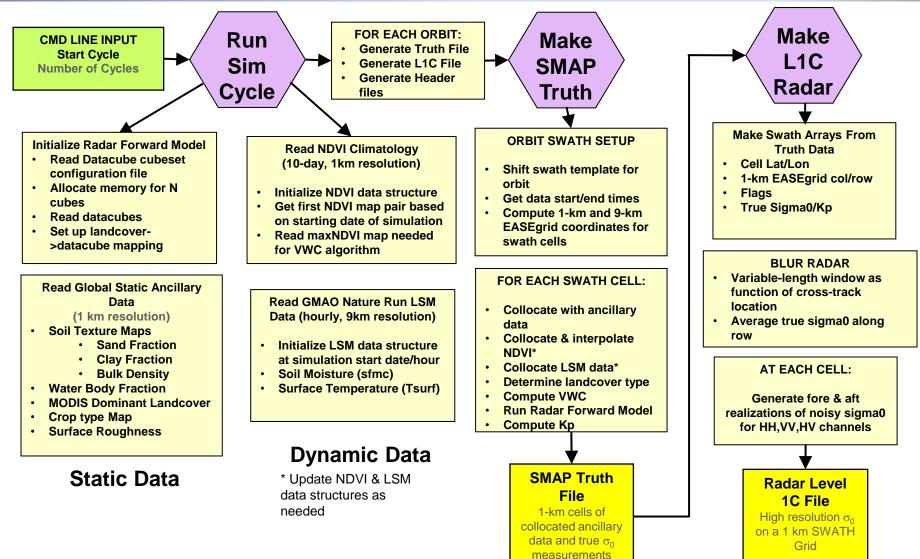
Data Simulation Approach for Rehearsal 2 Simulation Upgrades

- Radiometer simulation
 - Make use of current operational inputs (SM, Tsurf, precip, snow, Tair, ocean wind)
 - Introduce ocean wind forward model for simulation of open-water Tb with wind?
 - Coordinate with L1 team to work out generation of simulation with L1 sensor processing
 - Can GloSim Tb be reverted to L1A or L0 radiometer data?
 - L1 team: Create anomalous data from GloSim truth inputs?
 - Geolocation errors (attitude anomalies/biases, etc.)
 - Noise diode calibration
 - RFI?

Radar simulation

- Make use of current operational inputs (SM, Tsurf, precip, snow, Tair, ocean wind)
- Introduce ocean wind forward model for simulation of open-water backscatter
- Add fore/aft azimuths (function of cross-track location) to simulation data output
- Coordinate with L1 team to work out generation of simulation with L1 sensor processing
- L1 team: Create anomalous data from GloSim truth inputs?
 - Complete reversion of backscatter to 'counts' not feasible for SAR
 - Reversion to L0/L1A may be possible for low-res L1B_S0 radar data
 - Pointing errors, calibration biases, RFI?

GloSim2 Radiometer Simulation Flow



Specify orbit ID range (1-5,400)	An b cle	 STEP 1: Sample at FOV lat/lon's 246,575-by-338 elements per half orbit STEP 2: Water pixels within FOV Compute dielectric constant using Klein-Swift model Compute water TB using Fresnel equations, along with FOV incidence STEP 3: Land pixels within FOV Compute dielectric constant using Mironov model (thawed state) Compute dielectric constant using modified Dobson model (frozen state) Construct VWC array using (a) interpolated NDVI, (b) annual max NDVI, and (c) IGBP-based stem factor Construct 'b' and 'omega' arrays from IGBP-based lookup table Construct 'h' array from 's' array using the h = 0.1 * s relationship 	<section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header>
Static Data	Dynamic Data	Compute land TB using Fresnel equations, along with FOV incidence and tau-omega model STEP 4: Antenna synthesis	Integrate water TB and/or land TB according to FOV antenna gain. Result: one TB per boresight location

GloSim2 Radar Simulation Flow

