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Need for Soil Moisture Information for Agriculture
• Early assessment of emerging risk, due 

to too much or too little available soil 
water, will assist the agricultural 
community to develop appropriate 
management strategies 

– Erosion risk
– Prediction of spring flooding
– Pest assessment
– Fertilizer, pesticide and seed demand
– Yield estimation
– Soil trafficability

Daily

Weekly

Monthly

Seasonally

Source: International GEO Workshop on Synthetic Aperture Radar 

(SAR) to Support Agricultural Monitoring: Report of Pre-workshop 

Survey Findings
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GRIP Project Objectives: Segment 1 R&D (October 2007 – March 2010)

• To develop, test and evaluate methods to quantify surface soil moisture using active synthetic 
aperture radar (SAR) satellite sensors. 

• To develop a method to flag regions experiencing extreme soil moisture conditions using 
passive microwave data, in order to cue collection of spatially detailed SAR data.

Segment 2 Demonstration (not funded)

• To demonstrate the assessment of risk due to extreme soil moisture conditions using integrated 
active and passive microwave soil moisture products, over sites in the Prairies.

Project Team:
• Research Branch (Dr. Heather McNairn, Dr. Amine Merzouki, Catherine Champagne, Anna 

Pacheco, Dr. Jiali Shang, co-op students)
• Agri-Environmental Services Branch (John Fitzmaurice, Zhirong Yang, Grant Wiseman, Allan 

Howard, Ian Jarvis)
• CCRS (Dr. Ridha Touzi, Dr. Brian Brisco, Dr. Bob Hawkins, Dr. Francois Charbonneau)
• University of Guelph (Dr. Aaron Berg)
• University of Manitoba (Dr. Paul Bullock)
• University of Calgary (Dr. Michael Collins)
• Government of Saskatchewan, Environment (Dr. Magfur Rahman)

Supporting Agricultural Risk Management: An Integrated Passive-

Active Microwave Approach to Identify Soil Moisture Extremes
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Concept of Integrated Active and Passive System

Conceptual Monitoring ApproachConceptual Monitoring Approach

Weekly coarse-resolution 
assessment of soil moisture from 

passive microwave sensors

Use historical record of soil 

moisture to identify seasonal 

and regional normal conditions

Flag regions experiencing soil 

moisture extremes for 

acquisition of high-spatial 
resolution SAR data 

Derive soil moisture from SAR 
data for detailed mapping and 

assessment of agricultural 

regions at risk

0% 30%
Volumetric Soil Moisture
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SAR for Soil Moisture Estimation

• There is a strong correlation between soil dielectric and radar backscatter. However, 
deriving soil moisture estimates from backscatter is challenging and there are several 
limitations.

• Surface roughness has a significant impact on radar scattering
– Roughness effects can be minimized using steep incidence angles, but cannot be eliminated
– Radar models describe roughness using one or more descriptors: root mean square variance 

(rms), correlation length (l), autocorrelation function (gaussian, exponential)
– Measurement of rms and l is very tricky on tilled fields 
– Radar will penetrate surface and therefore “optical roughness” (as measured by field 

instruments) may or may not be representative of what the radar sees
– Radar also views surface “off-nadir” and therefore appropriate representation of roughness can 

be difficult to capture in the field

• Radar penetrates soil up to a maximum of about 10 cm. Penetration depends on 
frequency, incidence angle and soil moisture. This  complicates soil moisture 
measurements in field as penetration depth varies due to moisture conditions.

• Vegetation has a significant impact on radar backscatter and as yet there are no 
robust models  to separate vegetation from soil contributions. Therefore current 
applications of SAR are limited to non-vegetated targets. 
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Sensitivity of Active Radar to Surface Soil Parameters  

Incident

Wave Scattering
Pattern

Smooth

Rough

Low % Mv

High % Mv

Incident
Wave Scattering

Pattern

Backscatter versus Soil Roughness Backscatter versus Soil Moisture

for identical λ, P, θ, Mv for identical λ, P, θ, rms

σσσσοοοο = f ( λλλλ, P, θθθθ, rms, l, mv )
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Methods for Soil Moisture Estimation
• Empirical models

• Change detection
– Assumes that soil moisture changes over time but that roughness changes are small 
– Relies on good relative calibration and images must all be acquired using the exact same radar 

configuration (only moisture changes)
– Provides only relative changes, unless change is calibrated with ground data

• Semi-empirical models (i.e. Dubois and Oh)
– More robust than empirical, but coefficients may not always be valid under new circumstances
– Relatively easy to invert
– Most require multi-polarized or multi-angle data to resolve soil moisture and surface roughness 

contributions

• Physical scattering models (i.e. IEM) 
– Well suited for investigating backscatter responses as a function of radar configuration or for 

exploring the sensitivity of backscatter to target characteristics
– Complex and difficult to invert

• Neural Networks
– Requires extensive training data
– NN developed with one set of training data not applicable to other data sets 
(must be re-trained)
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RADARSAT-2 Data Over Ontario and Manitoba

• Spring 2008 Casselman (ON): 
May 5 (FQ19), 16 (FQ11) & 23 (FQ16)

• Spring 2008 Carman (MB): 
April 23 (FQ11), May 10 (FQ15) &17 (FQ11)

• In situ soil moisture using ThetaProbe
• > 2100 measurements over 44 fields 
per acquisition (ON) 
• > 2400 measurements over  39 fields 
per acquisition (MB)

• roughness measured using 1-metre pin 
board

• experiment represents application of SAR 
modeling under “realistic” conditions – untilled 
and tilled conditions

May 5, 2008 (RSAT-2 FQ19)
R-HH, G-VH, B-VV
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Soil Moisture Sampling Design

Casselman

•4 x 4 pixels (120 x 120m);

• 3.6 acres

• ~64 radar samples

Carman 

• 5 x 5 pixels (150 x 150m);

• 5.6 acres

• ~100 radar samples

• site uniformity: roughness, residue cover, tillage implementation, soil type, slope

• 16 sample site with 3 replicates (total of 48 readings per site)
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Ground Data Collection

Needle Profiler

Theta Probes

Weather and Daughter 
Stations
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Processing Chain
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RADARSAT-2 Quality Check

---9.35---15.68-8.0-8.23Urban areas

-10.5-11.7-21.5-23.8-10.7-11.9Bare Fields

-11.1-12.3-16.5-16.7-11.6-10.5Forest

30 - 32
May 16, 

2008
Carman

---9.4---14.4-8.2-8.5Urban areas

-12.0-11.9-23.2-23.9-12.2-13.4Bare Fields

-11.2-10.8-17.3-16.5-11.1-10.6Forest

35 - 37
May 23, 

2008
Casselman

Ulaby and 

Dobson (1989)
RSAT-2

Ulaby and 

Dobson (1989)
RSAT-2

Ulaby and 

Dobson (1989)
RSAT-2

Mean VVMean HVMean HH

Target
Incidence 

angle (deg)

Acquisition 

date
Study site

• Mean backscatter (HH, HV and VV) from targets were compared to backscatter statistics (at the same 
incidence angle) published by Ulaby and Dobson. For all three targets (water, forest, bare soil), mean 
backscatter from the image was within 1 dB of published backscatter values.

• Backscatter values were extracted for pixels along a transect drawn across the range of the RADARSAT-2 
images. 99% of the pixels along this transect had backscatter values above the noise floor (as specified with 
the RADARSAT-2 product). Specifically for water, forest and bare soil targets, all backscatter values for all 
polarizations were well above the noise floor.

• For flat bare soil targets, HH and VV backscatter was highly correlated above the noise floor.

• For bare soil and forest targets, the cross-polarization phase (HH-HV and VV-VH) appeared noise-like.

• No artifacts were observed in the HV-VH coherency (in either magnitude or phase). 
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Forward Modelling and RADARSAT-2

• Forward modelling revealed a significant bias in radar backscatter
• Bias observed with all models, suggesting models may not be primary source of error
• May be due to approach to soil moisture and roughness field measurements

• Applied Correction Factors (errors within 1dB would be considered within calibration error)
Correction Factor for HH: 3.5 dB (Dubois) and 5.0 dB (Oh)
Correction Factor for VV: 2.0 dB (Dubois) and 5.0 dB (Oh)

•correction fit both Ottawa and MB data

0.561.882.360.425. 315.760.621.952.440.533.213.83VV

0.601.812.300.444.975.420.592.162.710.464.304.95HH
All

0.522.292.890.425.846.370.602.002.60.503.754.3VV

0.592.142.750.465.365.910642.222.820.474.935.48HH
Carman

0.501.531.790.404.865.180.491.862.210.482.853.36VV

0.501.521.820.404.634.960.422.102.570.423.534.23HH
Casselman

IA
MAE 

(dB)

RMSE 

(dB)
IA

MAE 

(dB)

RMSE 

(dB)
IA

MAE 

(dB)

RMSE 

(dB)
IA

MAE 

(dB)

RMSE 

(dB)

Corrected OhOhCorrected DuboisDubois
Pol.Dataset



14

Model Inversion Results
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� Root Mean Square Error:

� Mean Absolute Error:

RMSE and MAE statistics for Oh model for 2008

7.138.416.637.867.568.87HH-VV-HV

6.708.126.257.857.048.30VV-HV

6.638.136.577.706.127.56HH-HV

7.358.646.327.736.828.02HH-VV

MAE 

(%)

RMSE 

(%)

MAE 

(%)

RMSE 

(%)

MAE 

(%)

RMSE 

(%)

Both SitesCarmanCasselman

Polarization

RMSE and MAE statistics for Dubois model for 2008

7.218.668.139.615.186.21HH-VV

MAE 
(%)

RMSE 
(%)

MAE 
(%)

RMSE 
(%)

MAE 
(%)

RMSE 
(%)

Both SitesCarmanCasselman

Polarization
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Soil Moisture Maps Combining Dubois and Oh Model 

Estimates

1.5 to 

9.5

> 9%

< 31%

> 20o> 2.6

< 19.7

> 0.1

< 6.0

Oh et al., 

1992

Oh

1.5 to 

11.0

≤ 35%≥ 30oNA≤ 2.5Dubois et 

al., 1995

Standard 

Dubois

f (GHz)Mv (%)θoklksAuthorsRadar 

Models

k = 2π/λ

Validity ranges 
of models
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Field Measured Soil Moisture

• Approx. 1% error in precision for 

ThetaProbe

• Approx. 4% error in conversion of the 

dielectric to volumetric soil moisture

• Non-coincident collection of in situ and 

satellite data

• Mismatches between measurement 

depths and microwave penetration depths

• Spatial variability in soil moisture across a 

sampling area due to 

– soil texture, organic matter, soil structure 

and topography

– tillage structure activities.

Clods Impact on Moisture - F03-S1, 2007/11/16
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Within Site and Between Site Variances in Soil 

Moisture (Fall 2007)

0.0

5.0

10.0

15.0

20.0

25.0

30.0

35.0

40.0

45.0

50.0

F
0

1
-S

1
-P

0
1

-R
1

-t

F
0

1
-S

1
-P

0
3

-R
3

-t

F
0

1
-S

1
-P

0
6

-R
2

-t

F
0

2
-S

1
-P

0
1

-R
1

-t

F
0

2
-S

1
-P

0
3

-R
3

-t

F
0

2
-S

1
-P

0
6

-R
2

-t

F
0

3
-S

1
-P

0
1

-R
1

-t

F
0

3
-S

1
-P

0
3

-R
3

-t

F
0

3
-S

1
-P

0
6

-R
2

-t

F
0

4
-S

1
-P

0
1

-R
1

-t

F
0

4
-S

1
-P

0
3

-R
3

-t

F
0

4
-S

1
-P

0
6

-R
2

-t

F
0

4
-S

1
-P

0
8

-R
4

-t

F
0

5
-S

1
-P

0
3

-R
1

-t

F
0

5
-S

1
-P

0
5

-R
3

-t

F
0

5
-S

1
-P

0
8

-R
2

-t

F
0

5
-S

2
-P

0
3

-R
1

-t

F
0

5
-S

2
-P

0
5

-R
3

-t

F
0

5
-S

2
-P

0
8

-R
2

-t

F
0

6
-S

1
-P

0
3

-R
1

-t

F
0

6
-S

1
-P

0
5

-R
3

-t

F
0

6
-S

1
-P

0
8

-R
2

-t

F
0

6
-S

2
-P

0
3

-R
1

-t

F
0

6
-S

2
-P

0
5

-R
3

-t

F
0

6
-S

2
-P

0
8

-R
2

-t

F
0

6
-S

3
-P

0
3

-R
1

-t

F
0

6
-S

3
-P

0
5

-R
3

-t

F
0

6
-S

3
-P

0
8

-R
2

-t

F
0

7
-S

1
-P

0
3

-R
1

-t

F
0

7
-S

1
-P

0
5

-R
3

-t

F
0

7
-S

1
-P

0
8

-R
2

-t

F
0

8
-S

1
-P

0
3

-R
1

-t

F
0

8
-S

1
-P

0
5

-R
3

-t

F
0

8
-S

1
-P

0
8

-R
2

-t

F
0

8
-S

2
-P

0
3

-R
1

-t

F
0

8
-S

2
-P

0
5

-R
3

-t

F
0

8
-S

2
-P

0
8

-R
2

-t

no-tilltilled



18

Application of Soil Moisture Estimates with Help of  
Polarimetric Decomposition

May 5, 2008                                                  May 23, 2008                                            May 16, 2008

Unsupervised classification product based on Freeman-Durden decomposition

Classes 1 to 3 correspond to surface scattering.

Classes 4 to 6 correspond to the double-bounce scattering.

Classes 7 to 9 correspond to the volume scattering.
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Isolating Surface Scattering for Soil Moisture Estimation 

Using Freeman-Durden Decomposition 

Total Power

Surface        Double bounce       Volume scattering

• adjust backscatter model estimations using only surface interaction component

• Dubois can’t provide a formulation of the cross-pol backscatter coefficient (σHV)
• use of Oh semi-empirical backscatter model
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Processing and Analysis Chain

 
Quad-Pol RADARSAT-2 

Data 

Ground Truth Data 

Soil Moisture + Roughness 

Freeman Durden 

Decomposition 

SAR Data 

Processing 

Rough Surface 

Power 
meas

s
P  

Volume Scattering 

Power 
meas

v
P  

Double Bounce 

Power 
meas

d
P  

Computing Intensities 

Using Oh Model 
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Rough Surface 
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s
P  
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Results from Oh Model Inversion – Casselman and 
Carman
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� Root Mean Square Error:

� Mean Absolute Error:

6.317.70Surface Power

6.958.37Total power
Polarimetry based

7.138.41HH-VV-HV

6.708.12VV-HV

6.638.13HH-HV

7.358.64HH-VV

Multi-polarization

MAE (%)RMSE (%)PolarizationInversion Approach
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Conclusions

• Dubois and Oh models provide soil moisture estimates that when 

compared to in situ measurements have rms errors of 6-9%.

• Future data collection is needed to evaluate repeatability of 

results. Repeat passes will permit easier assessment of errors 

for relative moisture estimation.

• Decomposition can be useful in application of soil moisture 

models

• Errors in ground measurements need to be evaluated
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Next Steps
Will Do:

• Mask volume and double bounce dominant scatters while performing the 

backscatter model validation. Use Cloude-Pottier decomposition in combination with 

unsupervised classifier.

• Acquire additional quad-pol data in a same incidence angle configuration. Are 

these results repeatable?

• Assuming repeatable results, develop plan to pilot methods over sub-watershed of 

Red River Watershed (under AAFC SAGES project)

Would like to Do:

• Finish development of laser profiler to characterize “off-nadir” roughness view

• Conduct field campaign to assess errors in the in situ (Theta Probe) 

measurements (from SAR perspective) (What is the “truth” as we “validate” model 

estimates??)

• Combine these soil moisture models with vegetation model (being assessed under 

another AAFC GRIP project).

• Test these models with L-Band data (How do we get access to enough L-Band 

data?)
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RADARSAT-2 and TerraSAR Acquisitions over 

Casselman for Fall 2009

ProgrammedstripNear_014RASC5:52 PMNov. 43

ProgrammedstripNear_014RASC6:52 PMOct. 132

ProgrammedstripNear_014RASC6:52 PMSept. 211

TerraSAR-X

ProgrammedFQ19ASC5:54 PMNov. 8

ProgrammedFQ5ASC5:42 PMNov. 5

ProgrammedFQ16DES6:09 AMNov. 2

ProgrammedS6ASC5:58 AMNov. 1

3

ProgrammedFQ19ASC6:54 PMOct. 15

ProgrammedFQ5ASC6:42 PMOct. 12

ProgrammedFQ16DES7:09 AMOct. 9

CancelledS6ASC6:58 AMOct. 8

2

CancelledFQ19ASC6:54 PMSept. 21

ReceivedFQ5ASC6:42 PMSept. 18

ReceivedFQ16DES7:09 AMSept. 15

CancelledS6ASC6:58 AMSept. 14

1

RADARSAT-2

StatusBeam Mode
Pass 

Type
Start Time

Image 

Date

Field 

work 

campaign

Sensor


