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Preface 
 
The SMAP ancillary data reports provide descriptions of ancillary data sets used with the science 
algorithm software in generation of SMAP science data products.  The Ancillary Data Reports are 
updated as new data or processing methods become available.  Current versions of the ancillary data 
reports are available along with the Algorithm Theoretical Basis Documents (ATBDs) via the 
SMAP web site at http://smap.jpl.nasa.gov/documents/. 
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List of Acronyms 
 

ATBD Algorithm Theoretical Basis Document 
ECMWF European Centre for Medium-range Weather Forecasts 
ESA European Space Agency 
FLUXNET  Flux Network (Micrometeorological Tower Sites) 
GDAS Global Data Assimilation System 
GEOS-5 Goddard Earth Observing System Model, Version 5 
GES DISC Goddard Earth Sciences Data and Information Services Center 
GFS Global Forecast System 
GMAO Goddard Modeling and Assimilation Office 
IFS Integrated Forecast Center 
IGBP International Geosphere Biosphere Program 
LST Land Surface Temperature 
MERRA Modern Era Retrospective-analysis for Research and Applications 
NCCS NASA Center for Climate Simulation 
NCEP National Centers for Atmospheric Prediction 
NOAA National Oceanic and Atmospheric Administration 
NRCS Natural Resources Conservation Service 
NWP Numerical Weather Prediction 
SCAN Soil Climate Analysis Network 
SDS Science Data System 
SMAP Soil Moisture Active Passive 
TOPMODEL Topography-based hydrological Model 
USDA United States Department of Agriculture 
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1. Introduction 
Surface temperature information is needed by the SMAP passive soil moisture retrieval 

algorithms to determine the soil surface emissivity from brightness temperature (TB) observations.  
The emissivity is then used to estimate the soil moisture.  This procedure is described in the 
Algorithm Theoretical Basis Document (ATBD) for Level 2 & 3 Soil Moisture (Passive) Data 
Products1.  

Since the SMAP observations typically view mixed scenes containing components of bare soil, 
vegetation and open water, the physical temperature of each of these components needs to be 
considered.  First, a water temperature Tw is needed to estimate the brightness temperature of the 
open water fraction within the footprint.  This enables a “water-corrected” or land-only brightness 
temperature (TB) to be computed for the land-fraction part of the footprint.  The land surface 
emissivity can then be determined by dividing this TB by the composite or footprint-averaged land 
surface temperature (including soil and vegetation components of the scene). The vegetation and 
soil temperatures are assumed to be equal in the SMAP soil moisture retrieval algorithm, which is a 
reasonably good assumption for the half-orbits with 6:00 am (descending) Equator crossing, so that 
the terms soil temperature and land surface temperature can be used interchangeably and referred to 
as  Ts.  Furthermore, Ts as used by the soil moisture retrieval algorithms is considered to be an 
average or effective temperature of the top 5 cm layer of the soil.   

1.1 Purpose 

The purpose of this report is to document the evaluation of a number of candidate ancillary 
datasets that were used to select the best dataset to use for deriving Ts values that best represent 
globally what the SMAP soil moisture retrieval algorithms require.  An assessment of data quality is 
provided along with a description of the selected dataset.  

Three primary sources of ancillary surface temperature data for SMAP can be considered: (1) in 
situ monitoring stations; (2) other (non-SMAP) satellite remote sensing observations; and, (3) land 
surface models including data assimilation and re-analyses. The in situ source is not preferred 
because SMAP is a global mission, and in situ stations provide sparse and spatially inconsistent 
coverage. Satellite observation sources are not preferred due to difficulties in obtaining observations 
at the same overpass time as SMAP and incorporating them into the data processing stream, and 
also due to errors associated with Ts retrieval (e.g., cloud/atmospheric contamination). Therefore, 
the assessment presented here focused on evaluating operational land surface model surface 
temperature products and selecting the most appropriate product as an ancillary dataset for SMAP. 

The Surface Temperature dataset is one of a suite of ancillary datasets required by the SMAP 
L1-L3 science data processing algorithms.  The complete list of datasets is provided in Appendix A.  
Ancillary data required by the L4 processing algorithms (data assimilation products) are described 
in the L4 ATBDs. 

1.2 Scope and Objectives 

A comparison was performed of in situ observations and surface temperature outputs from three 
land surface models: (1) the Global Data Assimilation System (GDAS) and Global Forecast System 
(GFS) produced by the U. S. National Ocean and Atmospheric Administration (NOAA) Centers for 
                                                
1 O’Neill, P. et al., Algorithm Theoretical Basis Document (ATBD), Level 2 & 3 Soil Moisture (Passive) Data 
Products, http://smap.jpl.nasa.gov/documents/. 
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Environmental Prediction (NCEP); (2) the Modern Era Retrospective-analysis for Research and 
Applications (MERRA) product produced by the U. S. National Aeronautics and Space 
Administration (NASA) Global Modeling and Assimilation Office (GMAO); and (3) the Integrated 
Forecasting System (IFS) produced by the European Centre for Medium-range Weather Forecasts 
(ECMWF). The objectives are two-fold: 

1. Determine whether the surface temperature outputs from the three models above differ 
significantly between the models, and if so, where and when (spatial and temporal patterns 
of the differences) 

2. Compare and validate the model outputs using in situ measurements, and perform an error 
analysis. 

2. Parameter Description and Requirements 
Attributes of the Ts data required by the SMAP algorithms, to be supplied from model output 

data with pre-processing as needed, are: 
• represents the mean soil temperature (Kelvins) of the top 5 cm of the soil column  
• represents soil conditions at 06:00 am (and 06:00 pm) local solar time 
• available on the global 9 km and 36 km SMAP EASE grids  
• available with latency required by the SMAP SDS processing system 
• includes all regions and seasons globally 

The SMAP algorithms that use Ts are: 
• Level 2 soil moisture passive, L2_SM_P (36 km EASE-grid, 24 hour latency) 
• Level 2 soil moisture active-passive, L2_SM_AP (9 km EASE-grid, 24 hour latency) 

A description of the SMAP products including grid resolutions and latencies, and product 
algorithms, is available in the SMAP Handbook (http://smap.jpl.nasa.gov/mission/description). 
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3. Evaluation of Source Data 
Much of this section builds on earlier work by Holmes et al. [2012] who compared model 

output surface temperature data with in situ data collected over Oklahoma in the U.S.  This analysis 
seeks to extend the approach to a more globally distributed set of in situ data, with results more 
representative of global conditions.  Table 1 provides a summary of the surface temperature-related 
variable attributes provided by the three models evaluated in this report. 
 
Table 1. Summary of source models and temperature variables relevant to SMAP. 

 NWP Center / Model 

 GMAO / MERRA ECMWF / IFS NCEP / GDAS 

Parameters T (skin) 
T (0-10 cm) 

T (skin) 
T (0-7 cm) 

T (skin) 
T (0-10 cm) 

Output Interval (UTC) Hourly average, 
centered on the half-

hour 

6-hourly 
(0z/6z/12z/18z) 

6-hourly 
(0z/6z/12z/18z) 

+ 3 hour forecasts 

Spatial Resolution 
(2009 data)* 

0.5 x 0.67 deg 25 km 0.313 deg (T382) 

* The data sets were interpolated to 1° x 1° for subsequent analysis and intercomparison. 

3.1 Error Sources 

In assessing modeled and in situ surface temperature there are four main sources of error: (1) in 
situ sensor error; (2) upscaling error; (3) depth correction error; and (4) model error. Sensor error 
may be due to calibration error (both instantaneous and over time), uncertainty in depth of 
measurement, and sensor disturbance. Assessments for theoretically implausible phase, and 
significant shifts in record at specific times, can help in identifying problematic in situ sites for 
exclusion. Upscaling error includes error in the assumption that an observed value at a point can be 
used to represent an average over a larger pixel area, as well as error of any remote sensing data 
used in an upscaling method. Depth correction error involves the shifting or extrapolation of soil 
temperature values from the model or measurement, which are provided for a given vertical depth, 
to values representing a different vertical depth. Finally, model error is what we aim to quantify. 
More detail on the error sources is provided in the sections below. 

3.2 In Situ Data 

In situ soil temperature (Ts) data at 5 cm depth were compiled for analysis from: (1) 198 sites 
located within the U.S. that are provided by the U.S. Department of Agriculture (USDA) Natural 
Resources Conservation Service (NRCS) Soil Climate and Analysis Network (SCAN)2, and (2) 61 
sites within the FLUXNET tower network3 that includes CarboEurope (34 sites), AmeriFlux (24 
sites), Canada-Fluxnet (2 sites), and CarboAfrica (1 site) [Baldocchi et al., 2001]. The SCAN and 
FLUXNET sites are shown in Figure 1. Of these, a subset of 129 sites was selected based on 
requirements for the depth correction procedure (section 3.4), a further 64 of which were selected as 
suitable for the upscaling procedure (section 3.3). The selected sites represent most land cover types 
as defined by the International Geosphere-Biosphere Programme (IGBP) and most climates, though 
                                                
2 http://www.wcc.nrcs.usda.gov/scan/ 
3 http://www.fluxdata.org 
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with a few noteworthy absences in hot and wet areas (e.g., tropical rainforests), hot and dry areas 
(e.g., deserts), and very cold regions (e.g., tundra and ice) (Figure 2). Further work should include 
in situ data for deserts. 
 

(a) 

 
 

(b) 

 
 
Figure 1. Sites used for in situ measurements of soil temperature:  
(a) SCAN (http://www.wcc.nrcs.usda.gov/scan/SCAN_brochure.pdf) 
(b) FLUXNET (http://www.fluxdata.org) 

Soil Climate Analysis Network (USDA NRCS) 

CarboEurope, Ameriflux, Canada-Fluxnet, CarboAfrica and OzNet 
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Figure 2. Climate and land cover representation of ground sites where in situ observations were 
collected, shown as symbols, on top of blue points representing all land points (from MERRA) in 
precipitation and temperature space. 
 

3.3 Upscaling 

In situ measurements may be representative of the surrounding conditions if the soil and land 
cover properties are spatially uniform (e.g., FLUXNET sites are often relatively homogeneous for 
up to 1 km2). In this analysis comparisons were made of in situ data with model output data for a 
grid cell, which ranges from 25 km2 (ECMWF) to 0.5x0.67 degrees (MERRA). A direct point-to-
pixel comparison contains representation error in that the model pixel averages together all land 
conditions within the pixel, but the in situ site may not be representative of the average of the larger 
area. For example, a point measurement made at an oasis in a desert would have a dramatically 
different characteristic signature than the larger model pixel that includes primarily desert. 
Nonetheless, visual examination in Google Earth for each site showed that such extreme case do not 
occur in our dataset, and rather most sites are visually and qualitatively “similar” to the surrounding 
areas on average. However, no upscaling was applied in the analysis beyond this inspection.  

3.4 Depth Correction 

The soil layer depth assumed for Ts varied among the models, as well as the in situ validation 
data. The surface layer Ts depth is 10 cm for MERRA and ECMWF, 7 cm for NCEP, and 5 cm for 
the in situ measurements. Hence, a normalization routine was necessary to make the depth of Ts 
comparable across models and with the in situ measurements. This involves a depth-correction that 
leverages temporal phase information to ensure all model estimates and in situ measurements are in 
phase with one another. The depth correction procedure applied here is based on the earlier work of 
Holmes et al. [2012] who used in situ sites in Oklahoma, USA. The depth correction procedure used 
in this study was extended to a more globally distributed set of in situ sites. The following is 
excerpted from the Holmes et al. [2012] paper to describe the theory and implementation of the 
depth correction approach (Box 1): 
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Box 1 (from Holmes et al., 2012) 
 
Theory 
The diurnal and seasonal cycles of heating of the land surface result in distinct periodic temperature 
variations that propagate downward below the surface. Assuming only conductive heat transfer and 
a long-term average temperature that is constant with depth, the propagation of the temperature 
waves to deeper layers can be described by an exponential decrease in amplitude (A) and an 
increase in phase shift (dφ) (e.g. Van Wijk and de Vries [1963]). Both modulations are 
parameterized as a function of vertical distance (dz) and e-folding damping depth (zD): 

Dz
dzd −

=ϕ  (4) 

 (5) 

where dz (dz=z2-z1) is positive in the upward direction. The damping depth is an expression of the 
thermal properties of the medium, in particular the thermal diffusivity (a, m2/s), and indicates the 
distance (zD) over which the amplitude of the wave is reduced by 63%to 1/e of its original value:  

f
azD π2
2

=  (6) 

where f (1/s) is frequency of the temperature wave. 
The thermal properties in a soil are mainly determined by soil moisture content and soil type. 

To assess the impact of these factors on the variability and size of the phase shift, the thermal 
diffusivity was calculated for three soil types, Sand, Sandy Clay, and Clay soils according to Peters-
Lidard et al. [1998]. The damping depth for a harmonic with a period of a day is calculated 
according to Equation 6, and the associated phase shift over 0.05 m vertical distance then follows 
from Equation 4. Based on these simulations the phase shift is rather constant at soil moisture levels 
above 0.10 m3/m3, with values ranging between 70 and 100 minutes depending on soil type. Below 
this soil moisture level the phase shift may increase sharply to 180 minutes. Over the year and 
between different localities, the propagation of temperature harmonics into the soil may thus be 
described by a single set of equations that is only weakly affected by variations in soil moisture, if 
the soil is not very dry.  

 
Phase synchronization 
Because soil temperature harmonics change with depth, soil temperature records from different 
depths cannot be directly compared. Even a slight vertical misalignment will result in an artificial 
increase in the error as calculated between the two records. The calculated error will then not only 
depend on the accuracy of the assessed records, but also on the time of day and represented soil 
depths. To better compare two temperature records, we can apply the heat flow principles to remove 
the phase difference and reduce the bias in amplitude. Following Equation 4, the relative distance 
(the vertical distance between input and target depth, divided by the damping depth) can be replaced 
by dφ, the phase shift between the mean daily temperature harmonic of two temperature series. This 
phase shift captures in a single number the integrated effect of the soil thermal properties and can be 
calculated between any two time series of soil temperature. The temperature at the target depth is 
then estimated by applying both the phase shift and the exponential amplitude decay to the 
underlying harmonics of the original temperature record. Decomposing the temperature signal in 
the underlying harmonics is done in a way similar to the classic Fourier analysis as described by 
Van Wijk and De Vries [1963]. 

The phase synchronization method was first tested on the in situ data, by modeling the 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

D
zz z

dzeAA 12
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temperature at the depth of the shallow record (T5
*) based on the data from the deeper sensor (T10) 

and the observed mean phase difference between the two records:  
( )ϕdTfT ,10

*
5 =  (7) 

The phase of each record is determined by optimizing φ so that the RMSE is minimized 
between the mean diurnal cycle and the sine function with a maximum at noon:  

( )22)(sin ππϕ −−+= tATTsim  (8) 

where T and A are the amplitude of the diurnal cycle. Installing and maintaining the 
temperature sensors at a constant shallow depth is difficult. The topsoil can be affected by rainfall, 
freeze-thaw heaving, vegetation and animal activity, which can all lead to erosion or sedimentation 
of several centimeters. Therefore, we cannot assume that T5 represents exactly the 0.05 m soil 
depth. Furthermore, there may be differences in vegetation density between the plots that can cause 
an apparent damping of the temperature harmonics.  

If the sensors are installed vertically above each other, disturbances at the surface should not 
affect the distance between them. However, settling of the sensors after installation may still affect 
the distance between the sensors. For each station the RMSE was then calculated between T5

* and 
T5. To minimize possible errors in the in situ measurements, stations with an overall RMSE of more 
then 0.8 K were discarded from further analysis.  
 
 

To determine how to apply the depth correction procedure globally using a method that has 
only been applied to sites in Oklahoma, there were three options for how to synchronize phases: (1) 
use the same phase differences found in Oklahoma, (2) determine the phase locally for each site, 
and fit for each model, and (3) determine the average global phase shift using the global database of 
validation sites. The problem with option (1) is that sites in Oklahoma do not represent the global 
diversity of ecosystems and climates. The problem with option (2) is that the phase would need to 
be calculated operationally for each site, but the model phase dependency on vegetation would be 
lost. Therefore option (3) was followed. The spatial variation in phase within each model was first 
qualitatively observed, which was relatively stable for each model though with differences between 
models both in time and space. The model differences in phase are related to how the models couple 
moisture and temperature with land cover. Each model’s phase was shifted by the difference 
between the average phase of the models and the in situ data. This removed structural (i.e., depth) 
phase difference between the models without modifying the spatial phase variation inherent to each 
model. In preparing the globally corrected data a normal moving average was used instead of a 
central moving average, as the latter was not possible operationally, only in reanalysis.  

3.5 Model vs. In Situ Data 

When the models were compared against in situ data without depth correction all three models 
showed RMSEs of less than 3.6 K, with an average RMSE across all three models of 3.2 K (Figure 
3). NCEP had the lowest RMSE at 2.98 K. Negative temperature values displayed noticeable 
“flooring” in that the linear trend exhibited by positive temperatures was lost at negative values. It 
was unclear whether the problem was in the models or in the in situ data, as sometimes one showed 
realistic values while the other did not, and vice versa. Removal of negative values, as was done in 
Holmes et al. [2012], led to further reduction in RMSE in NCEP (to 2.79 K) and MERRA (from 
3.56 to 3.43 K), but increased RMSE in ECMWF (from 3.14 to 3.17 K). The data were skewed 
towards over-representation by some land cover types, so a random selection was made from over-
represented sites to equilibrate with other land covers, producing an equal IGBP representation 
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analysis. This led to significant RMSE reduction in all models, with NCEP at 2.67 K, MERRA at 
3.39 K, and ECMWF at 3.00 K. 

  

 
 
Figure 3. Scatterplots of model (x-axis) versus in situ (y-axis) soil temperature (C). The left column 
shows all data without depth correction. The middle column shows all data with depth correction. 
The right column shows all data without depth correction and without negative values. 
 

Depth correction improved the RMSE of only ECMWF, bringing the RMSE down to between 
2.77–2.90 K (all sites: 2.84; excl. negatives: 2.82; equal IGBP: 2.77; equal IGBP, excl. negatives: 
2.90). RMSE’s with depth correction were larger for NCEP (3.35–3.88 K) and MERRA (3.51–3.71 
K), with NCEP gaining the most error due to depth correction. Thus the improvements gained by 
using the depth correction procedure were mixed. It should be noted that “best” errors for all 
models were in the range of 2.7–3.4 K, close to the 2 K target for SMAP, and these errors still 
include upscaling error and in situ measurement error. Further analysis of RMSE and bias by 
biome, climate space, latitude and season was not performed as part of this study. 
 

4. Selection of Source Dataset 

4.1 Overview 

To select the primary source data set (ECMWF, NCEP, or MERRA) for generating the Ts 
ancillary data required by the SMAP algorithms, the analysis results in Section 3 were considered 
along with the following criteria for each model: 
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1. Compatibility with SMAP ancillary data requirements for Ts discussed in Section 2 (e.g., 
spatial resolution, time-of-day, etc.) 

2. Accuracy and performance against in situ measurements (analysis of Section 3) 

3. Availability, including latency, data loss, etc. 

4. Responsiveness of the source data production team to SMAP needs 

5. Public availability and permission to redistribute ancillary data along with the SMAP data 

Based on the above criteria, the MERRA data set was the prime candidate for selection. Since 
MERRA is a reanalysis data set, the actual source data set was selected to be the NASA Goddard 
Earth Observing System Model, Version 5 (GEOS-5) forward processing (FP) system.  GEOS-5 is 
a near-real time atmospheric modeling and assimilation system [Lucchesi, 2013] that is of the same 
lineage as MERRA.  In the analysis of Section 3, MERRA showed slightly higher RMSEs than both 
NCEP and ECMWF though all three models showed similar values (Figures 3, 4). Therefore, the 
choice of model based on RMSE alone is somewhat arbitrary, and other logistical factors have 
higher weight in the selection decision.  Since GEOS-5 is NASA-based, and the GEOS-5 land 
model developers are part of the SMAP team, the GEOS-5 model output products are likely to be 
the most suitable and responsive to SMAP needs.  GEOS-5 provides data on an hourly time-step 
rather than the 6-hourly ECMWF and NCEP data, so less processing is needed to temporally 
interpolate.  GEOS-5 currently provides data at 0.25 x 0.3125 degree spatial resolution, which is 
similar to the SMAP resolution.  Finally, GEOS-5 ancillary data can be freely redistributed with the 
SMAP data. 
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Figure 4. Mean global average soil temperature differences between models. 
 

4.2 GEOS-5 Data Description 

Below are details regarding the shared lineage between the MERRA and GEOS-5 data 
assimilation systems. The processing steps taken by SMAP on GEOS-5 outputs for subsequent soil 
moisture data processing are explained later in Section 6. 

• MERRA is the NASA/GMAO global atmospheric reanalysis [Rienecker et al., 2008, 2011; 
Trenberth et al., 2009]. This dataset covers the time period from 1979 through to the present 
day, with applications for both climate and meteorological studies, and includes a number 
of data fields such as cloud, ozone, surface turbulent fluxes and land surface diagnostics 
[Rienecker et al., 2008; Trenberth et al., 2009]. The reanalysis is produced using version 
GEOS-5.2.0 of the Goddard Earth Observing Data Assimilation System. This system 
assimilates approximately 4 million observations every 6 hours [Lucchesi, 2012], using an 
incremental analysis update (IAU) procedure [Bloom et al., 1996; Trenberth et al., 2009]. 
This approach attempts to combine the benefits of both intermittent and continuous data 
assimilation, by using the analysis increments continuously to force the GCM [Bloom et al., 
1996]. The main characteristic of MERRA is its focus on the hydrological cycle. This 
feature of the reanalysis is reflected in its use of the Catchment Land Surface Model 
(CLSM) [Koster et al., 2000] to derive four land surface temperature dynamics. In this 
model, the land surface is classified horizontally into categories (saturated, unsaturated, 
wilted and snow-covered zone), based on modeled root zone moisture distribution derived 
from a topography-based hydrological model [TOPMODEL, Beven and Kirkby, 1979].  

• The MERRA data used in this analysis come from the ‘Land-related surface quantities’ 
collection (“lnd” collection or “tavg1_2d_lnd_Nx”). In this collection, four MERRA 
surface temperature parameters are needed to derive global land surface (skin) temperature 
together with their fractional cover. These parameters are: the top snow layer, the 
unsaturated zone, the saturated zone and the wilted zone surface temperatures (‘TPSNOW’, 
‘TUNST’, ‘TSAT’ and ‘TWLT’ respectively), and their respective fractional areas 
(‘FRSNO’, ‘FRUNST’, ‘FRSAT’ and ‘FRWLT’; Lucchesi, 2012; Reichle, 2012). By 
calculating the area-weighted average of each surface temperature from the four categories, 
we derived the land surface temperature for each pixel, as shown in the following equation: 
TSKIN =  TPSNOW * FRSNO + TUNST * FRUNST + TSAT * FRSAT + TWLT * 
FRWLT 
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• Holmes et al. (2012) also used the top-layer soil temperature (TSOIL1) provided by GMAO 
using an off-line replay of MERRA.  For all vegetation classes except “broadleaf 
evergreen”, TSOIL represents the soil temperature in the 0-10 cm layer.  For “broadleaf 
evergreen” land cover (which is of minimal relevance to SMAP), the model surface (skin) 
temperature includes the temperature in the 0-5 cm layer, and TSOIL1 thus represents the 
temperature in the 5-15 cm soil layer.  Holmes et al. [2012] (see also Box 2 above) report 
results for TSKIN, TSOIL (=TSOIL1) and TAVG, which is the average of TSKIN and 
TSOIL1 (and thus represents most closely the temperature in the 0-5 cm layer).   For details 
see Reichle [2012] and Holmes et al. [2012]. 

• The operational SMAP data products will use ancillary soil temperature derived from the 
GEOS-5 forward processing NWP system [Lucchesi, 2013].  As of February 2015, the 
GEOS-5 FP system is using version 5.13 of the atmospheric modeling and data assimilation 
system.  Output is provided hourly on a grid with 0.25 degree latitude spacing and 0.3125 
degree longitude spacing.  While the 5.13 system includes many enhancements since the 
5.2.0 version of MERRA, the data format and variable definitions are nearly identical to 
those of MERRA. 

• GEOS-5 FP spatial and temporal resolution is currently 0.25 x 0.3125 degrees, hourly 

• GEOS-5 FP spatial coverage: global 

• GEOS-5 FP years of available data: version GEOS-5.11: Jun 11, 2013-Aug 20, 2014; 
GEOS-5.13: Aug 20, 2014-present. 

• GEOS-5 FP latency: NWP near-real time (< 12 hours); medium-range forecast data are also 
available. 

• GEOS-5 FP accuracy: <3.4 K (based on MERRA data). 

4.3 Metadata 
• unit of measurement: Kelvin (K) 
• range of measurement: 0 to 340 K 
• projection: lat/lon 
• spatial resolution: 0.25 x 0.3125 degrees 
• temporal resolution: hourly averages, centered at 00:30, 01:30, 02:30 GMT 
• spatial extent: global 
• start date time: near real-time 
• end data time: near real-time 
• number of bands: not applicable 
• data type: float 
• min value: 0 
• max value: 340 
• no data value: 1.0e15 

4.4 Quality Control 
• bad data values: 1.0e15 
• missing data values: 1.0e15 
• flags: not applicable 
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5. Mask/Flag Derivation 
(Not applicable) 

6. Data Processing 

6.1 Customized GEOS-5 Collection 

The GEOS-5 data are delivered regularly to the JPL SMAP SDS in the form of a customized 
GEOS-5 “smp” (SMAP) collection [Reichle, 2012].  Data are available in near-real time (with ~10 
hours latency from the time for which the assimilation data are valid) in hourly intervals.  In 
addition to the “assimilation” (analysis) data, medium-range “forecast” data are also delivered so 
that processing and dissemination of SMAP products are not delayed due to dependency on Ts data 
availability.  Unless otherwise stated, only the analysis fields are used in SMAP surface temperature 
processing.   

6.2 Preprocessing Algorithm and Re-gridding 

The required SMAP surface temperature (Ts) parameter (effective soil temperature) is obtained 
from the GEOS-5 data by taking the arithmetic mean of the two parameters TSURF (skin 
temperature) and TSOIL1 (temperature of the 0-10 cm layer) at their native 0.25 x 0.3125-deg 
grids.  This averaged value most closely represents the temperature in the 0-5 cm layer as 
supported by the analysis of Holmes et al (2012).  Only values of these parameters over land 
grid cells are used by SMAP Level 2 soil moisture algorithms.  Water temperature values Tw (see 
Section 1, Introduction) are taken directly from the TS parameter without modification and used for 
water fraction TB correction. 

The above processing results in a composite temperature array on a 0.25 x 0.3125-deg grid. 
Two-dimensional interpolation (bilinear interpolation) is then applied to create the required surface 
temperature fields on 3-, 9-, and 36-km EASEv2 projections. 
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Appendix A: Ancillary Datasets Used in SMAP L1-L3 Processing 
 

 Dataset Name Static/Dynamic Report Number  
1 Soil Attributes Static JPL D-53058  
2 DEM Static JPL D-53056  
3 Landcover Classification Static1 JPL D-53057  
4 Crop Type Static1 JPL D-53054  
5 Urban Area Static JPL D-53060  
6 Static Water Fraction Static JPL D-53059  
7 Surface Temperature Dynamic2 JPL D-53064  
8 Vegetation Water Content Dynamic3 JPL D-53061  
9 Vegetation & Roughness 

Parameters 
Static JPL D-53065  

10 Permanent Ice Static JPL D-53062  
11 Snow Dynamic4 GSFC-SMAP-007  
12 Precipitation Dynamic2 JPL D-53063  

1 Updated yearly 
2 Updated six-hourly 
3 Updated monthly 
4 Updated daily 
 


