Towards a unified ice thickness product derived from SMAP and SMOS: First results of brightness temperature comparisons

Amelie Tetzlaff, Lars Kaleschke

Institute of Oceanography, University of Hamburg, Germany

Sea ice thickness from SMOS

Retrieval algorithm

based on brightness temperature (TB) intensity $(0^{\circ}-40^{\circ})$ sea ice radiation model \rightarrow + thermodynamic model account for subpixelscale heterogeneity of ice thickness

\rightarrow sea ice thickness of up to $1\,m$

Data products

 \rightarrow 12.5 km polar stereographic grid (NSIDC)

Data products

SMOS TB at 40°

2-step regression after Zhao et al. (2015)

$$0.5(T_{b,h}+T_{b,v})=A\cdot\theta^2+C$$

Zhao et al.: "Refinement of SMOS multiangular brightness temperature toward soil moisture retrieval and its analysis over reference targets". IEEE (2015)

SMOS TB at 40°

2-step regression after Zhao et al. (2015)

$$0.5(T_{b,h}+T_{b,v})=A\cdot\theta^2+C$$

$$T_{b,h} = a_h \cdot \theta^2 + C\left(b_h \sin^2(\theta) + \cos^2(\theta)\right)$$

Zhao et al.: "Refinement of SMOS multiangular brightness temperature toward soil moisture retrieval and its analysis over reference targets". IEEE (2015)

Qualitative comparison of SMAP and SMOS - 5 April 2015

SMAP

SMOS

TBV

твн

Quantitative comparison

Selected regions over ice and water

 $400\,km \times 400\,km$

Quantitative comparison - over sea ice

Average		1 Apr 2015 - 31 Aug 201
	TBV	TBH
RMSD:	1.7 K	3.7 K
bias:	-0.8 K	2.9 K

- pol. difference 3.7 K smaller for SMOS
- correlation r > 0.99

Standard deviation

	TBV	TBH	
RMSD:	0.7 K	1.1 K	
bias:	<0.1 K		
<i>r</i> :	0.98	0.97	

Quantitative comparison - over sea ice

Average		1 Apr 2015 - 31 Aug 201
	TBV	твн
RMSD:	1.7 K	3.7 K
bias:	-0.8 K	2.9 K

- pol. difference 3.7 K smaller for SMOS
- correlation r > 0.99

Standard deviation

	TBV	твн	
RMSD:	0.7 K	1.1 K	
bias:	< 0.1 K		
<i>r</i> :	0.98	0.97	

Quantitative comparison - over open water

- RFI contamination in SMOS +
- known issue in SMOS v620: ocean bias (but better long term stability)
- bias: 1.2 K (TBV), 11.6 K (TBH)
- noise in the signal ightarrow $r \sim 0.5$

Summary

1) Fit SMOS TB to 40°

2) Comparison between SMAP and SMOS TB:

- variability over sea ice: very good agreement
- 3.7 K smaller polarisation difference over ice for SMOS
- ▶ large bias (>11 K) in TBH for SMOS over water

Short term TB variability

