


SMAP Mission Overview

The Soil Moisture Active and Passive (SMAP) mission is a NASA-directed
mission aiming at providing global observations of soil moisture and land
surface freeze/thaw state. The resulting hydrosphere state measurements
will help advance our understanding of processes that link the water, energy
and carbon cycles, as well as enhance existing weather and climate forecast
skills. For more information, please visit http://smap.jpl.nasa.gov.

Spaceborne L-band radar and radiometer are used to acquire complete
global observations of 0° and Tz within 3 days.

Radar Radiometer
Antenna Shared 6-m rotating mesh antenna at 40° incidence
Frequency 1.26 GHz 1.41 GHz
Orbit 670-km sun-synchronous orbit at 6am/6pm LTAN
Spatial resolution 1-3 km (SAR) 40 km
Primary data products o°, F/T state, soil moisture T, Soil moisture
Expected launch 2013




SMAP Testbed

Overview: In support of SMAP mission design, a set of software tools is
being developed at JPL. Collectively known as SMAP Science Algorithm
Testbed (SAT), it provides a common computing environment where SMAP
L1 and L3 algorithms will be coded, tested, and eventually ported to
generate operational SMAP data products. Currently, SAT development
aims at mimicking the SMAP end-to-end processing flow from observations
to data product generation.
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Algorithm Testing

Rationale: SMAP geophysical data products are derived from retrieval
algorithms. To satisfy mission success criteria, a given algorithm must
meet a certain retrieval accuracy requirement. For soil moisture retrieval at
40 km based on SMAP radiometer, the accuracy requirement is 4% vol.

Approach: In this presentation, we describe the performance of two
versions of single-channel retrieval algorithms via Monte Carlo simulations
on SAT, and compare their retrieval error budgets against field campaign
data collected during the Soil Moisture Experiment 2002 (SMEX02) in
Iowa, USA. The two versions of single-channel retrieval algorithms subject
to testing are based on microwave emission modeling of a two-layered land-
vegetation medium at horizontal and vertical polarizations:
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Ty Uncertainty Analysis

In reality, T measurements, model parameters, and ancillary data needed
to retrieve soil moisture all come with various sources of noise and
uncertainty. The combined impact on Ty measurements by these
perturbation sources within a nonlinear system is most conveniently
analyzed using Monte Carlo simulations.

Assuming Gaussian (need not be so, though) random error distributions,
we perturb each parameter simultaneously and in each run compute T}
based on the perturbed parameters (red and blue below). We then repeat
this procedure many times to obtain the probability density function of T’.
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Ty Uncertainty Analysis

Using h € N(0.1,5%), w € N(0.05,5%), Q € N(0.05,5%), 7 € N(*,10%),
Ts € N(25°C,2°C),and T € N(Tz,1.5K)
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(1) At low vegetation (e.g. 7 < 0.1), H is more optimal than V in terms of
lower RMSE across the whole range of soil moisture (the green region
below the solid line in the H-V plot). (2) At moderate-to-high vegetation
(e.g. T> 0.1), V becomes more optimal than H. T uncertainty grows as soil
moisture increases. (3) At any given T uncertainty level, V covers a larger
area (hence wider range of m, and 7 variability) than H does.
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Retrieval Error Budget Analysis

Based on the Tz uncertainty in previous chart, how much retrieval error
does it translate to?
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(1) For a given retrieval error budget level (say, 4%), V in general covers a
larger area (hence wider range of m, and 7 variability) than H does. (2)
According to the H-V plot, V has lower RMSE than H except over a small
region (the green region below the solid line) defined by limited m, and

variability. (3) V’s optimality over H becomes more pronounced at high m,,
and/or T conditions.



Do Experimental Field Campaign
Data Support the Previous
Simulation Results?



SMEXo2 Field Campaign

Overview: In support of Aqua/AMSR-E validation, measurements were
collected throughout the state of lowa in June-July 2002. In particular, the
data acquired over the Walnut Creek Watershed are especially useful for
SMAP algorithm development due to the availability of ground
measurements and L-band airborne active and passive observations. This
study primarily focuses on comparison between ground measurements and
PALS Ty observations.

July 7, 2002

Ground data were
collected at corn “6
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PALS Passive Observations: Soil Moisture

It was relatively dry at the beginning of the campaign. The dry period was
followed by a period of sporadic rainfall, resulting in widespread dampness.

To assess retrieval robustness over different amounts of vegetation, data
were collected and analyzed over sites with low-to-moderate vegetation
(soybean and corn). Observations: (1) Higher Ty dynamic range and better
correlation over soybean fields. (2) V has better correlation, especially at
high vegetation.

320

TBH
Vv TBV

(o)}

S}

N

TB (K)
TB (K)
[

VWC (kg/m2)
N w

—

n
Q
=]
T
o] (<]
o o
g @

180 1 L Il Il 1 1 Il 1 1 L Il Il
0 5 10 15 20 25 30 35 0 5 10 15 20 25 30 35
Soil Moisture (% Vol) Soil Moisture (% Vol)




PALS Active Observations: Soil Moisture

Observations: (1) Better correlation over soybean fields. (2) V has better
correlation for both crops. (3) RVI shows excellent correlation with VWC.
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PALS Active Observations: VWC
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Algorithm Optimality According to Simulation Results

White dots represent (m,,7) conditions observed over corn fields during the
campaign, yellow dots over soybean fields. The underlying contour plot
indicates the difference in retrieval error between the H- and V-pol
algorithms. V-pol algorithm produces more accurate retrieval under (m,,7)
conditions where the difference is positive.
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Testing Procedure

Testing Basis: Under a given set of geophysical conditions (crop types,
soil moisture, VWC, surface temperature, surface roughness, ... etc), an
algorithm delivers better retrieval than another if it provides a more
accurate description of the relationship between the inputs (e.g. ground
measurements) and outputs (e.g. PALS T observations).

Test 1: We use ground measurements and PALS T, observations collected
over corn fields to first calibrate the emission model. Then, we apply both
H- and V-pol algorithms and compare their resulting retrieval errors.

Test 2: The procedure is similar to that for Test 1, except that the data
collected over soybean fields are now used for initial model calibration.



Test 1: V-pol vs. H-pol over Corn Fields

We feed different combinations of (h,b) into the emission model and for
each combination we compare retrieved soil moisture with ground truth.
The resulting error is plotted below as a function of h and b for both H- and
V-pol algorithms.
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(1) Whatever the final calibrating (h,b) combination may be, V results in
lower retrieval error than H by an average of ~2% VSM across the board.
(2) H-pol error looks like a down-shifted version of V-pol error, suggesting
polarization dependence of b? (3) V performs better than H over corn

fields.



Test 2: V-pol vs. H-pol over Soybean Fields

We feed different combinations of (h,b) into the emission model and for
each combination we compare retrieved soil moisture with ground truth.
The resulting error is plotted below as a function of h and b for both H- and
V-pol algorithms.
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(1) Conclusion not so clear-cut: some (h,b)’s make V retrieve better than H
but some don’t. (2) In either case, the difference in retrieval accuracy
between V and H is minimal: only +0.1% VSM. (3) Bottom line: both V and
H work equally well over soybean fields, neither is superior to the other by
any significant margin.



Summary

SMAP Science Algorithm Testbed (SAT) is an important component of the
mission. It provides a common computing environment for performing
science trades, algorithm testing, and future operational infrastructure
development.

This study illustrates a scheme in which algorithm testing can be performed
on SAT using computer simulation data (via Monte Carlo simulations) and
observational data (SMEXo02 dataset).

The unique objectives of each field campaign must be well understood
before the experimental data can be used to properly test algorithms for a
particular metric (e.g. impacts on retrieval performance by vegetation,
pixel-to-footprint scaling, azimuthal dependence, and sub-footprint surface
heterogeneity).



