Soil Moisture Active and Passive Mission (SMAP)

Algorithms & Cal/Val Workshop
Oxnard, CA, June 9-11, 2009

Introduction

E. Njoku

Jet Propulsion Laboratory alifornia Institute of Technology

P. O'Neill

NASA Goddard Space Flight Center

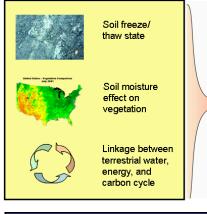
SMAP Mission Context

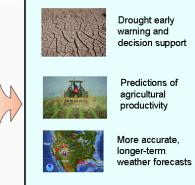
"Earth Science and Applications from Space: National Imperatives for the next Decade and Beyond"

SMAP is one of four missions recommended by the NRC Earth Science Decadal Survey for launch in the 2010–2013 time frame

 On Feb 2, 2008, NASA announced that SMAP would be one of two new start missions initiated in FY08

Tier	Tier 1: 2010–2013 Launch				
	Soil Moisture Active Passive (SMAP)				
	ICESAT II				
	DESDynl				
	CLARREO				
Tier	Tier 2: 2013–2016 Launch				
	SWOT				
	HYSPIRI				
	ASCENDS				
	GEO-CAFE				
	ACE				
Tier	Tier 3: 2016–2020 Launch				
	LIST				
	PATH				
	GRACE-II				
	SCLP				
	GACM				
	3D-WINDS				




SMAP Science & Applications

Soil Moisture Active-Passive (SMAP) Launch: 2010-2013 Mission Size: Medium

- SMAP is unique because its measurements have applications across a wide range of Earth sciences and their applications
- Disciplinary Decadal Survey panels cite SMAP applications

Decadal Survey Panels #	Cited SMAP Applications		
Water Resources and Hydrological Cycle	 Floods and Drought Forecasts Available Water Resources Assessment Link Terrestrial Water, Energy and Carbon Cycles 		
2. Climate / 3. Weather	Longer-Term and More Reliable Atmospheric Forecasts		
4. Human Health and Security	Heat Stress and Drought Vector-Borne and Water-Borne Infectious Disease		
5. Land-Use, Ecosystems, and Biodiversity	Ecosystem Response (Variability and Change) Agricultural and Ecosystem Productivity Wild-Fires Mineral Dust Production		

SMAP Science Requirements

DS Objective	Application	Science Requirement
Weather Forecast	Initialization of Numerical Weather Prediction (NWP)	Hydrometeorology
Climate Prediction	Boundary and Initial Conditions for Seasonal Climate Prediction Models Testing Land Surface Models in General Circulation Models	Hydroclimatology
Drought and	Seasonal Precipitation Prediction	
Agriculture Monitoring	Regional Drought Monitoring	Hydroclimatology
/ ignoditure informationing	Crop Outlook	
	River Forecast Model Initialization	Hydrometeorology
Flood Forecast	Flash Flood Guidance (FFG)	
	NWP Initialization for Precipitation Forecast	
	Seasonal Heat Stress Outlook	Hydroclimatology
l Human Health	Near-Term Air Temperature and Heat Stress Forecast	Hydrometeorology
Human Health	Disease Vector Seasonal Outlook	Hydroclimatology
	Disease Vector Near-Term Forecast (NWP)	Hydrometeorology
Boreal Carbon	Freeze/Thaw Date	Freeze/Thaw State

	Hudro Hudro		Carbon	Baseline Mission		Minimum Mission	
Requirement	Hydro- Meteorology	Hydro- Climatology	Carbon Cycle	Soil Moisture	Freeze/Thaw	Soil Moisture	Freeze/ Thaw
Resolution	4–15 km	50–100 km	1–10 km	10 km	3 km	10 km	10 km
Refresh Rate	2–3 days	3–4 days	2–3 days ⁽¹⁾	3 days	2 days ⁽¹⁾	3 days	3 days ⁽¹⁾
Accuracy	4–6% **	4–6%**	80–70%*	4%**	80%*	6%**	70%*

^{(*) %} classification accuracy (binary Freeze/Thaw)

Mission Duration Requirement:

3 Years Baseline; 18 Months Minimum

^{(**) %} volumetric water content, 1-sigma

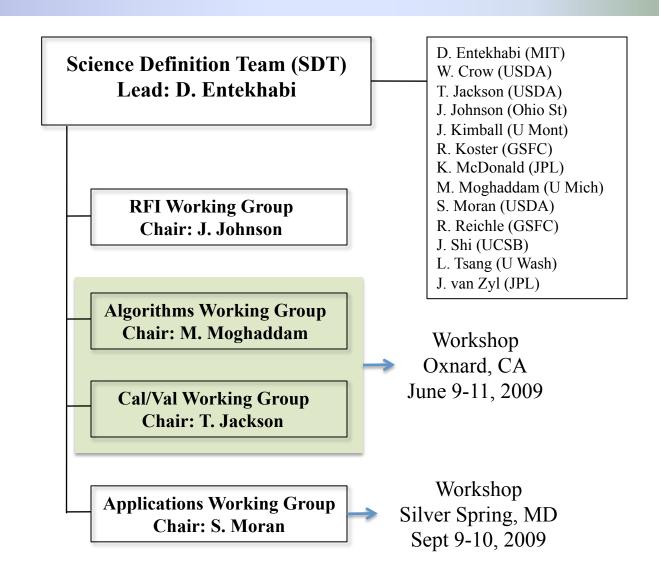
⁽¹⁾ North of 45N latitude



SMAP Baseline Science Data Products

Abbreviation	Description	Grid Type and Spacing	Spatial Resolution	Latency*
L1B_S0_LoRes	Low Resolution Radar Backscatter (σ°)	Time Order	~ 30 km	12 hours
L1C_S0_HiRes	High Resolution Radar Backscatter (σ°)	Earth Grid 1 km	~ 1–3 km	12 hours
L1B_TB	Radiometer Brightness Temperature (T_B)	Time Order	~ 40 km	12 hours
L1C_TB	Radiometer Brightness Temperature (T _B)	Earth Grid 36 km	~ 40 km	12 hours
L3_F/T_HiRes	Freeze/Thaw State	Earth Grid 3 km	~ 1-3 km	24 hours
L3_SM_HiRes	Radar Soil Moisture (internal product)	Earth Grid 3 km	~ 1-3 km	
L3_SM_40km	Radiometer Soil Moisture	Earth Grid 36 km	~ 40 km	24 hours
L3_SM_A/P	Radar/Radiometer Soil Moisture	Earth Grid 9 km	~ 10 km	24 hours
L4_C	Carbon Net Ecosystem Exchange	Earth Grid 9 km	~ 10 km	14 days
L4_SM	Surface & Root Zone Soil Moisture	Earth Grid 9 km	~ 10 km	7 days

^{*}The SMAP Project will make a Best Effort to reduce the data latencies beyond those shown in this table.



SMAP SDT Working Groups

http://smap.jpl.nasa.gov/science/wgroups/

- Working Groups
 established to enable
 broad community
 participation in the SMAP
 mission
- Provide forums for interaction on issues related to SMAP science and applications goals and objectives
- Communicate via email and at meetings, conference sessions, workshops, and other venues

