

SMAP CalVal Workshop

Oxnard, 3-5 May 2011

Summary of L4 Product Cal/Val Requirements

R. Reichle* NASA/GSFC

J. Kimball** Univ. of MT

* Email: Rolf.Reichle@nasa.gov Phone: 301-614-5693

** Email: johnk@flbs.umt.edu Phone: 406-982-3301 x230

SMAP Level 4 soil moisture and carbon products

L4_SM Product:

Assimilating SMAP data into a land model driven with observation-based forcings yields:

- a root zone moisture product (reflecting SMAP data), and
- a complete and consistent estimate
 of soil moisture & related fields.

Surface **SMAP observations** meteorology Land model Gross **Primary** Data Productivity **Assimilation L4 SM Product:** Carbon Surface and rootmodel zone soil moisture and temperature **L4 C Product: Net Ecosystem** Exchange

L4 C Product:

Combining L4_SM (SM & T), high-res L3_F/T_A & ancillary Gross Primary Productivity (GPP) inputs within a C-model framework yields:

- a Net Ecosystem Exchange (NEE) product, &
- estimates of surface soil organic carbon (SOC), component C fluxes (R) & underlying SM & T controls.

L4_SM baseline and option algorithms

Main objectives:

- Provide estimates of root zone soil moisture (top 1 m) based on SMAP obs.
- Provide *global*, *3-hourly*, *9 km* surface and root zone soil moisture.

Baseline algorithm:

- Customized version of existing NASA/GEOS-5 Land Data Assimilation System
 - 3d ensemble Kalman filter
 - Catchment land surface model

L4_SM inputs and outputs

SMAP inputs

Brightness temperature

(L1C_TB, 36 km)

Radar soil moisture

(L2_SM_A, 3 km)

Freeze-thaw state

 $(L3_F/T_A, 3 km)$

Ancillary data inputs

Land model parameters

Surface meteorology (incl. observation-corrected precip)

Land assimilation parameters

L4_SM product

9 km, 3-hourly global output with 7-day latency

- Surface soil moisture (≡ top 5 cm)
- Root zone soil moisture (≡ top 1 m)

In units of m³m⁻³ and percentiles

- Research output
 - surface and soil temperatures (input to L4_C)
 - sensible, latent, and ground heat flux
 - runoff, baseflow, snowmelt
 - surface meteorological forcings (air temperature, precipitation, ...)
 - error estimates (generated by assimilation system)

L4_SM cal/val

Pre-launch

- Use L4_SM system with SMOS obs (also AMSR-E, Aquarius, ...)
- Apply cal/val to the extent possible.
- Conduct OSSE's (calibration of assimilation parameters).

L4_SM cal/val

Post-launch

Calibration within 1st year:

Bias correction param's ("cdf matching"), assimilation param's (thru innovations).

Validation with in situ observations:

Surface soil moisture:

Apply L2_SM_A/P cal/val procedures.

Root-zone soil moisture:

In principle, cal/val is identical to surface soil moisture, but

- have fewer in situ obs. (e.g. from USDA/SCAN, NCDC/CRN)
- rarely/never have multiple in situ obs. within single grid cell

Requirement: Need as many **root-zone** soil moisture obs. as possible.

L4_SM cal/val

Post-launch

Additional evaluation:

- Examine "obs-minus-model" residuals for internal consistency of the L4_SM algorithm (Reichle et al. 2008; Crow and Reichle 2008).
- Evaluate with high-quality, independent precipitation obs (Crow 2007).
- Evaluate research product components (e.g. fluxes) to the extent possible.

SMAP L4_SM validation approach

Methodology

Data

Importance

Metric

Core Sites

Observed grid cell average values (time-continuous)

Primary

Anomaly correlation, *RMSE*, bias

Sparse Networks

Observed values (time-continuous)

Primary

Anomaly correlation

Satellite Products Orbit-based match-ups (SMOS, ASCAT, ...) Secondary: Pending continued operation Anomaly correlation, *RMSE*, bias

Model Products Global modeling and assimilation systems (ECMWF, NCEP, ...)

Primary

Anom. correlation, assim. diagnostics, *RMSE*, *bias*

Field Experiments

Detailed estimates for a very limited set of conditions

Secondary

Anomaly correlation, *RMSE*, bias

Synergies with L4_SM development: Cal/val based on land modeling and assimilation

- Algorithm Testbed
 - GMAO Nature Run
- Supplemental and complementary validation approaches:
 - Include:
 - Triple collocation (L2_SM)
 - Consistency of assim. increments with independent precipitation obs. (L2_SM, L4_SM)
 - Consistency of assim. system diagnostics (e.g., statistics of "obs.-minus-forecast" residuals) (L4_SM)
 - Enable scaling from point-scale obs. to satellite-scale estimate
 - Are independent of scheduling risk associated with field campaigns

L4_C baseline algorithm

<u>Product</u>: Net Ecosystem CO_2 exchange (NEE = GPP - R_{eco})

- Motivation/Objectives: Quantify net C flux in boreal landscapes; reduce uncertainty regarding missing C sink on land (NRC Decadal Survey);
- Approach: Apply a soil decomposition model driven by SMAP L4_SM & ancillary (LC, GPP) inputs to compute NEE;
- Inputs: Daily surface (<10cm) SM & T (L4_SM), LC & GPP (MODIS, VIIRS);
- Outputs: NEE (primary/validated); R_{eco} & SOC (research);
- Domain: Vegetated areas encompassing boreal/arctic latitudes (≥45 N);
- **Resolution**: 9x9 km;
- Temporal fidelity: Daily (g C m⁻² d⁻¹);
- Latency: 14-day;
- Accuracy: Commensurate with tower based CO₂ Obs. (RMSE ≤ 30 g C m⁻² yr⁻¹ and 1.6 g C m⁻² d⁻¹).

L4_C algorithm options

Several L4_C options are being evaluated based on recommendations from an earlier ATBD peer-review; options designed to enhance product accuracy & utility include:

- Global domain encompassing all vegetated land areas;
- Internal GPP calculations using SMAP L4_SM, L3_FT & ancillary land cover (LC) & VI (e.g. NDVI from MODIS, VIIRS) inputs;
- Represent finer scale (<9km) spatial heterogeneity consistent with available LC inputs;
- Explicit representation of LC disturbance (fire) and recovery impacts;
- Algorithm calibration using available observation data (FLUXNET, soil inventories).

L4_C cal/val

Pre-launch:

- L4_C development & testing using available inputs: LC, NDVI, GPP (MODIS); SM & T (MERRA); FT (SSM/I, AMSR-E, SMOS);
- Calibration/optimization and initialization of L4_C algorithm parameters (e.g. BPLUT, SOC pools, disturbance history);

Post-launch:

- Re-calibration & re-initialization of L4_C parameters using SMAP L4_SM inputs;
- Verify SMAP L4_C NEE accuracy:
 - Tower site comparisons using CO₂ Obs; stand-level C-model simulations & sensitivity studies;
 - Comparisons with available soil inventories;
 - Field campaigns using nested in situ, airborne (CARVE, AirMOSS) & satellite data;
 - Atm. model inversions of L4_C outputs & comparisions of resulting C source/sink activity against available observations (CO₂ flask network, GOSAT, OCO-2).

SMAP L4_C validation approach

Methodology

Core Sites

Sparse Networks

Satellite Products

Model Products

Field Experiments Data

Observed grid cell average values (time-continuous)

Observed values (time-continuous)

Orbit-based match-ups (SMOS, PALSAR, ...)

Site & Global modeling systems, model inversions (Carbontracker)

Detailed estimates for a very limited set of conditions **Importance**

Primary

Primary

Secondary

Primary

Secondary

Metric

Correlations, *RMSE*, bias

Correlations, RMSE, bias

Anomaly correlation, *RMSE*, bias

Sensitivity diagnostics, correlation, *RMSE*, bias

correlations, *RMSE*, bias

Optimal L4_C validation site design

- Characterize major biomes within northern land areas (baseline)
 - Boreal ENLF, tundra, grassland, mixed forest (DBLF, ENLF), & DNLF types;
 - Disturbance history & stand succession impacts;
- Representative conditions within regional (~10x10 km) window
 - Select sites with relatively homogeneous land cover & terrain conditions;
 - Continuous measurements to characterize daily variability & cumulative annual C fluxes;
- Documented uncertainty (systematic & random error) in C flux measurements
 - Established and well defined protocols for correction & gap filling to establish complete annual C flux time series;
 - Multi-year time series to establish average conditions & year-to-year variability;
- Coincident measurements of surface meteorology, H₂0 & CO₂ fluxes
 - Enable analysis of water, energy & carbon cycle linkages;
 - Measurements of component C fluxes (GPP, R_{eco}, NEE) & environmental controls (SM and soil T, surface SOC).

L4_C Cal/Val using Tower Site Data

Tower CO₂ flux data (FLUXNET) is used for L4_C calibration & validation (e.g. **left**). Baseline model performance is evaluated for expected accuracy (NEE RMSE<30 g C m⁻² yr⁻¹ or 1.6 g C m⁻² d⁻¹). A Markov Chain Monte Carlo (MCMC) optimization is applied to minimize an objective function by adjusting biome-specific model parameters to representative tower data, including calibrating soil moisture response curves (**center**) for better accuracy. Uncalibrated model runs (**right**) using alternative remote sensing & tower inputs are also used to clarify error propagation & uncertainty sources. Available FLUXNET data includes >400 site year measurements & represent most global biome types.

¹D. Baldocchi is PI of Tonzi and Vaira FLUXNET tower sites; ²R. Scott is PI of Santa Rita Site

SMAP Science Objective: Quantify C source-sink activity

Post-launch: L4_C model assimilation to quantify net C0₂ source-sink activity

- Apply L4_C products within carbon data assimilation system for tracking net CO₂ source/ sink activity;
- Atmospheric perspective based on atmospheric transport model (TM3) constrained by satellite remote sensing and sparse surface observations;
- Accounts for fossil-fuel and fire related CO₂ emissions;
- L4_C based NEE provides land surface initial conditions;
- Provides for rigorous validation using synergistic C observations (CO₂ flask network, GOSAT, OCO-2);
- Provides means to quantify C source/sink activity (SMAP Decadal Survey objective);

¹http://www.esrl.noaa.gov/gmd/ccgg/carbontracker2