Algorithm Requirements for Field Campaigns

Peggy O’Neill
NASA GSFC
SMAP Deputy Project Scientist

2nd Cal/Val Workshop
Oxnard, CA
May 3-5, 2011
Algorithm Requirements for Field Campaigns – L1

L1B_TB [E. Kim, P. Mohammed]

1. Fly OSU, UMich & GSFC RFI-detecting backends on future SMAPVEX flights
 -- continue RFI surveys of environment through pre-launch period
2. Repeat three SMAPVEX08-RFI flights: VA, PA, NY (Long Island Sound most important)
 -- repeat exact RFI flights to look at time evolution of RFI environment
3. Overpass of Delaware Bay NOAA buoy with low surface wind speeds on multiple days
 -- could be used to test APC (antenna pattern correction) over ocean
4. Airborne measurement of T_B spatial scaling in Dome-C vicinity
 -- for scaling up from Dome-C tower to 400-800 m box around Dome-C
5. Continue tower-mounted T_B measurements at Dome-C (ESA has stopped theirs)
 -- #4 & #5 both useful for calibration of L1B_TB (both point and area T_B)
 -- intercalibration of SMAP with SMOS & Aquarius

L1C_S0 [R. West]

-- Need more polarimetric L-band radar data over Amazon target areas (esp. VV, HV)
 -- currently checking existing satellite radar data
 -- used as reference target for removing long-term trends & biases
Algorithm Requirements for Field Campaigns – L2

• L2_SM_P [P. O’Neill, E. Njoku, T. Jackson, S. Chan]
 -- Needed for cal/val:
 -- measurements of 0-5 cm soil moisture, effective temperature, VWC
 -- measurements applicable to 36-km SMAP grid
 -- sites covering a variety of land covers & crops
 -- data acquired throughout the year to assess seasonality of algorithm parameterizations
 -- Priorities for Cal / Val pre-launch are developing good vegetation parameterizations for different land cover classes, including their seasonal & polarization variations

• L2_SM_A [M. Moghaddam, S. Kim]
 -- Needed for cal/val:
 -- soil moisture and roughness varying over expected ranges
 -- many classes of vegetation cover
 -- measurements of vegetation geometry and fractional cover
 -- dynamic vegetation to test time series algorithms
 -- long time series radar data of sufficient accuracy (better than 0.5 dB)
Algorithm Requirements for Field Campaigns – L2/3

- **L2_SM_A/P** [D. Entekhabi, N. Das]
 - Needed for cal/val:
 - new PALS data sets (in conical scan mode) over diverse landscapes and land covers
 - long time series active/passive data (at least one month)
 - large dynamic range of soil moisture conditions

- **L3_F/T_A** [K. McDonald, S. Dunbar]
 - Needed for cal/val:
 - focused campaigns using available a/c (UAVSAR) and satellite L-band radar data spanning F/T transitions over regional gradients (climate, land cover, terrain)
 - initialization of algorithm parameters (e.g. F/T reference states) over L3_F/T domain
 - test site with distributed measurements to capture sub-grid scale temperature variability and continuous measurements to characterize diurnal and daily variability
 - coincident measurements of surface meteorology & fluxes (water, CO₂)
Algorithm Requirements for Field Campaigns – L4

• L4_SM [R. Reichle]
 -- Needed for cal/val:
 -- 9 km sites w/ distributed measurements of both surface (0-5 cm) & profile (0-100 cm) soil moisture
 -- as many climate/vegetation/terrain combinations as possible
 -- need multi-year time series to obtain robust climatologies

• L4_C [J. Kimball]
 -- Needed for cal/val:
 -- will use subset (~ 40 towers) of FLUXNET tower network in pre-launch algorithm development activities along with MERRA and MODIS inputs
 -- remaining tower network reserved for post-launch validation
 -- will collaborate with AirMOSS efforts on carbon modeling & a/c campaigns in regional windows around 6-8 Ameriflux tower sites
Algorithm Requirements in Common

- F/T requirements unlikely to be met by soil moisture campaigns which avoid frozen soil conditions
 -- separate campaigns for F/T and SM [F/T campaign on agenda Wed AM]

- Soil moisture campaigns should strive for:
 -- long time series of active / passive microwave data
 -- to collect full dynamic range of soil moisture conditions
 -- to provide changing biomass conditions
 -- to assess seasonality of parameterizations
 -- new vegetation types / diverse landscapes
 -- test sites scalable to SMAP grid cells
 -- sites with sufficient number of ground measurement locations to provide good average at SMAP spatial scales
 -- availability of needed ancillary data (measurements of temperature, vegetation (type, water content, fractional cover, & geometry), surface roughness, etc.)
 -- should fly RFI backends on any cal/val flight
Ground samples of soil and biomass should include:

-- To validate the forward model:
 - Soil moisture & soil texture
 - Surface roughness profiles 5-10 at pixel scale and description of row pattern if it exists
 - Density of vegetation (e.g., # trunks or stalks)
 - Leaf geometry (shape and sizes) and water content (5-10)
 - Stalk or woody part geometry (length and radius) (5-10)
 - Leaf and Stalk orientation distribution characteristics
 - Ratio of stalks to leaves
 - Dielectric properties of vegetation
 - Fraction of vegetation cover in a given pixel

-- For validation of the retrieval:
 - Soil moisture & soil texture
 - Surface roughness
 - Biomass level
 - Vegetation class
 - Fraction of vegetation cover in a given pixel