

SMAP Algorithms & Cal/Val Workshop, Oxnard, CA

The SMAP Level 4 Surface and Root-Zone Soil Moisture (L4_SM) Product

Jun 10, 2009

Rolf Reichle* Wade Crow Randal Koster John Kimball NASA-GSFC USDA-ARS NASA-GSFC Univ. of MT

*Corresponding author: Rolf Reichle, 301-614-5693, Rolf.Reichle@nasa.gov

L4_SM motivation and overview

Assimilating **SMAP data** into a **land model** driven with **observation-based forcings (incl. precipitation)** yields:

- (1) a root zone moisture product (reflecting SMAP data)
- (2) an improved surface product
- (3) a complete and consistent estimate of soil moisture & related fields

L4_SM motivation and overview

Assimilating **SMAP data** into a **land model** driven with **observation-based forcings (incl. precipitation)** yields:

(1) a root zone moisture product (reflecting SMAP data)

(2) an improved surface product

(3) a complete and consistent estimate of soil moisture & related fields

NASA Catchment land surface model

equilibrium profile: the average deviation in a 1 m root zone layer (*"root zone excess"*), and the average deviation in a 5 cm surface layer (*"surface excess"*). The model outputs surface (top 5 cm), root zone (top 1 m), and total profile soil moisture as diagnostics.

The surface energy balance and surface runoff are computed separately for the saturated, transpiring, and wilting sub-areas of each catchment.

Implement for SMAP on a 9 km global grid (same as L3_SM_A/P product)

Koster et al. 2000; Ducharne et al. 2000; Bowling et al. 2003; Guo and Dirmeyer 2006; Guo et al. 2006

Ensemble Kalman filter (EnKF)

Andreadis and Lettenmaier (2005); Durand and Margulis (2007); Kumar et al. (2008a, 2008b, 2009); Pan and Wood (2006); Reichle et al. (2002a, 2002b, 2007, 2008a, 2008b, 2009); Reichle and Koster (2003, 2004, 2005); De Lannoy et al. (2007); Crow and Reichle (2008); Zaitchik et al. (2008); Zhou et al. (2006)

L4_SM inputs and outputs

L4_SM assimilation parameters

Observation error std from Surface Land surface L3_SM_A/P (≤ 0.04 m³/m³) Land model Land model						
Perturbations to model forcing and prognostic variables approximate "model errors".						
Perturbation	Additive (A) or Multiplicative (M)?	Standard deviation	AR(1) time series correlation scale	Spatial correlation	Cross-correlation with perturbations in	
reiturbation		Geviation	scale		SW	LW
Precipitation	М	0.5	1 day	50 km	-0.8	0.5
Downward shortwave (SW)	М	0.3	1 day	50 km	n/a	-0.5
Downward longwave (LW)	А	50 W m ⁻²	1 day	50 km		,
Catchment deficit	А	0.05 mm	3 h	25 km	n/a	
Surface excess	A	0.02 mm	3 h	25 km		

Values are based on experience with AMSR-E assimilation (Reichle et al. 2007) and synthetic experiments (Reichle et al. 2002b; Reichle and Koster 2003).

Will be tuned with SMOS observations.

Optional adaptive filtering module may help determine optimal values.

Bias and scaling

Figure shows typical bias between satellite and model surface soil moisture that must be addressed in the assimilation system.

Scaling is based only on data from a single year.

Baseline algorithm: A priori scaling (cdf-matching) of L3_SM_A/P into Catchment model climatology (Reichle and Koster 2004, Drusch et al. 2005).

Optional algorithm: Dynamic bias estimation (De Lannoy et al. 2007).

Will be tuned with SMOS observations.

Pre-launch

- Use L4_SM system with SMOS obs & apply cal/val to the extent possible.
- Conduct OSSE's (calibration of assimilation parameters).

Post-launch

Calibration within 1st year:

Bias correction param's ("cdf matching"), assimilation param's (thru innovations).

Validation with in situ observations:

Surface soil moisture:

Apply L3_SM_A/P cal/val procedures.

Root-zone soil moisture:

- In principle, cal/val is identical to surface soil moisture, but
- have fewer in situ obs. (e.g. from USDA/SCAN, NCDC/CRN)
- rarely/never have multiple in situ obs. within single grid cell

Additional evaluation:

– Examine "obs-minus-model" residuals for internal consistency of the L4_SM algorithm (Reichle et al. 2008; Crow and Reichle 2008).

- Evaluate with high-quality, independent precipitation obs (Crow 2007).
- Evaluate research product components (e.g. fluxes) to the extent possible.

Requirement: Need as many root-zone soil moisture obs. as possible.

Uncertainty estimates: Results from AMSR-E

Anomaly RMSE v. in situ observations [m³/m³]				
	Ν	AMSR-E	Model	Assim.
Surface s.m.	36	0.049	0.051	0.048
Root zone s.m.	32	n/a	0.039	0.036
Anomaly R time series correlation coeff. v. in situ observations, with 95% confidence interval				
	Ν	AMSR-E	Model	Assim.
Surface s.m.	36	.42±.01	.38±.01	.47±.01
Root zone s.m.	32	n/a	.37±.01	.45±.01

Anomalies ≡ Daily data with mean seasonal cycle removed

Higher quality of SMAP obs. will provide better improvements (see next slides).

Results UPDATED from Reichle et al. (2007) J Geophys Res, doi:10.1029/2006JD008033.

modeling systems.

mean seasonal cycle removed

L4_SM uncertainty estimates

Interpreting the OSSE for SMAP yields:					$ \Delta \equiv Model - L4_SM $ (skill contribution of	
	Skill scenario	L3_SM ^{1,3} (A/P)	Model ^{2,3}	L4_SM ³	 Δ 	SMAP over model)
Expected anomaly RMSE [m ³ /m ³]						anomalies ≡
Surface soil	High	0.028	0.046	0.035*	0.012	daily data with mean seasonal
moisture	Low	0.037	0.051	0.038*	0.012	
Root zone soil moisture	High	n/a	0.036	0.031	0.005	
	Low	n/a	0.038	0.031	0.007	*L4_SM skill appears worse
Expected anomaly R						than L3_SM
Surface soil moisture	High	0.78	0.63	0.71	0.08	skill because of OSSE legacy
	Low	0.70	0.41	0.54	0.13	constraints.
Root zone soil moisture	High	n/a	0.55	0.63	0.08	
	Low	n/a	0.46	0.59	0.13	
¹ Source: SMAP me ² Source: USDA/SC		quirements.				

³Source: OSSE results.

Assimilation of SMAP obs will provide improvements (over model) of ~0.01 m³/m³ for surface and ~0.005 m³/m³ for root-zone soil moisture.

▼

L4_SM is expected to meet the 0.04 m³/m³ error requirement.

- External review (in progress more later)
- Finalize L4_SM ATBD (by Jan 2010)
 - Error budget
 - Root-zone soil moisture cal/val
 - Refine specification of L4_SM product
- L4_SM development and implementation
 - Catchment model customization for SMAP (start ASAP)
 - 9 km global grid and 5 cm surface layer
 - Assimilation system development
 - L3_F/T assimilation development (start ASAP)
 - Decide between baseline and option algorithm (start 2010)
 - Operational implementation (start Oct 2010)
 - Exercise L4_SM with SMOS obs. and apply cal/val

External review

Input on L4_SM algorithm requested from select *commentators.*

To date received 7 (of 8) responses – THANKS!!!

[proposed] system [...] is state-of-the-art

most important contribution [...] is [...] root-zone soil moisture

extremely beneficial; looks quite okay to me

great asset to the SMAP mission

very useful for a large range of applications

emphasis should [...] be put on a flexible bias correction

assimilate Tbs and S0s [as opposed to L3 products]

Catchment land surface model is one of the best [...]

Consider using an ensemble of models. I DO NOT believe the Catchment model is [...] best

[for validation] need as a minimum [...] 5 stations in a 'grid' cell

What do you think? Let us know!

Rolf.Reichle@nasa.gov

Discussion

Suggested topics (feedback from external review, project needs):

Algorithm specifications

- baseline v. option algorithm (estimation of bias & assim. parameters)
- choice of land model
- smoother
- F/T assimilation

Output product specifications

- fields
- units
- space-time resolution
- Validation
 - metric and bias
 - special case of root-zone soil moisture
- Applications
 - any specific requirements?

THANK YOU FOR YOUR ATTENTION!

BACKUP SLIDES

NASA Soil-Moisture-Active-Passive (SMAP) mission

NASA Soil-Moisture-Active-Passive (SMAP) mission

			SMAP Baseline Science Data Pr	oducts	
		Abbreviation	Description	Resolution	Latency
		L1B_S0_LoRes	Low Resolution Radar Backscatter (σ°)	~ 30 km	12 hours
		L1C_S0_HiRes	High Resolution Radar Backscatter (σ°)	~ 1-3 km	12 hours
	L1B_TB	Radiometer Brightness Temperature (T_B)	~ 40 km	12 hours	
	1	L1C_TB	Radiometer Brightness Temperature (T_B)	~ 40 km	12 hours
	\frown	L3_F/T_HiRes	Freeze/Thaw State	~ 3 km	24 hours
Imilate	L3_SM_HiRes	Radar Soil Moisture (internal product)	n/a	n/a	
	L3_SM_40km	Radiometer Soil Moisture	~ 40 km	24 hours	
202		L3_SM_A/P	Radar/Radiometer Soil Moisture	~ 10 km	24 hours
σ		L4_SM	Surface & Root-zone Soil Moisture	~ 10 km	7 days
		L4_C	Carbon Net Ecosystem Exchange	~ 10 km	14 days

The L4_SM algorithm will be

- based on the existing NASA GMAO land assimilation system,
- developed and implemented within the NASA GEOS modeling and assimilation framework,
- written primarily in Fortran90 and an object-oriented extension (ESMF), and
- executed on Linux-based cluster computing facilities at NASA.

Estimated computational requirements:

Catchment model time step	20 min
EnKF update time step	3 h
Model/assimilation grid spacing	10 km
Number of model grid cells	1e6
Number of ensemble members	~24
CPU requirement per simulated month	18 h
Total memory requirement	23 GB
Online (hard-drive) storage requirement (1 data month)	90 GB
Long-term (tape) storage requirement (for entire 3-year mission)	3 TB

A number of scientists in national and international agencies were identified who envision using the SMAP L4_SM product, primarily for reanalysis and/or research/validation w.r.t. their operations and products:

Institution	POC
NOAA/NCEP, NOAA/NESDIS	Zhan
ECMWF	De Rosnay
Environment Canada	Belair
Air Force Weather Agency	Eylander
NOAA Climate Prediction Center	Mo, Xie
US Army	Davis
US Army	McWilliams
USGS Famine Early Warning System	Verdin

We anticipate that the SMAP L4_SM product will be widely used in academic and government research

- because it includes root-zone soil moisture and related land surface fields,
- because of its complete coverage, and
- because of the availability of consistent and comprehensive estimates of land surface hydrologic conditions.

Baseline:	Assimilate L3_SM_A/P + L3_F/T
Option:	Assimilate L1C_S0_HiRes + L1C_TB + L3_F/T

Advantages of option algorithm:

Consistent handling of surface soil temperature.

L4_SM processing independent of L3 algorithms.

Disadvantages of option algorithm:

Option algorithm requires implementation of forward radiative and backscatter transfer model within L4_SM processing system.

May not be as sophisticated as the corresponding inverse algorithms.

For now, focus on baseline algorithm.

Test option algorithm when permitted by L3 algorithm development, L4 implementation, and availability of SMOS data.

