SMAP L4 Carbon Product Development

¹John Kimball, ²Rolf Reichle, ³Kyle McDonald, ²Peggy O'Neill

¹The University of Montana, ²NASA GSFC, ³NASA JPL, Cal-Tech

SMAP Algorithms & Cal/Val Workshop, June 9-11 2009

SMAP L4 Carbon Motivation, Objectives

Motivation (NRC Decadal Survey 2007):

- "Soil moisture and its freeze-thaw state are key determinants of the global carbon cycle. Carbon uptake and release in boreal landscapes are a major source of uncertainty in assessing the carbon budget of the Earth system (the socalled missing carbon sink)".
- "A soil moisture mission will directly support science to reduce that major uncertainty" (i.e. the missing carbon sink on land).

Science Objectives:

- Global, high-resolution mapping of soil moisture and its freeze/thaw state to:
 - Link terrestrial water, energy and carbon cycle processes
 - Quantify net carbon flux in boreal landscapes
 - Reduce uncertainties about the "missing sink" for carbon (e.g. spatial pattern, seasonal-annual variability, sign/magnitude, biophysical controls).

Soil Moisture and F/T state are primary environmental controls on boreal vegetation productivity and land-atmosphere CO₂ exchange

Source: Nemani et al. 2003. Science 300

Baseline: Land-atmosphere CO₂ exchange

- **Motivation/Objectives**: Quantify net C flux in boreal landscapes; reduce uncertainty regarding missing C sink on land;
- Approach: Apply a soil decomposition algorithm driven by SMAP L4_SM and GPP inputs to compute land-atmosphere CO₂ exchange (NEE);
- Inputs: Daily surface (<5cm) soil moisture & T (L4_SM) & GPP (MODIS/NPP);
- Outputs: NEE (primary/validated); R_{eco} & SOC (research/optional);
- Domain: Vegetated areas encompassing boreal/arctic latitudes (≥45°N);
- **Resolution**: 10x10 km (9x9 km earth grid);
- Temporal fidelity: Daily (g C m⁻² d⁻¹);
- Latency: Initial posting 12 months post-launch, followed by 14-day latency;
- Accuracy: Commensurate with tower based CO₂ Obs. (RMSE \leq 30 g C m⁻² yr⁻¹).

Land areas where low temperatures are a major constraint to land-atmosphere CO_2 exchange.

- All Vegetated land areas above 45°N latitude.
 - Encompasses boreal-arctic areas considered a major sink for global CO₂ emissions;
 - T is a primary constraint on ecosystem processes (GPP, R, NEE);
 - NEE is a dominant influence on northern atmospheric CO₂ variability;
 - Minimal effects of tropical biomass burning and fossil fuel emissions on CO₂ patterns;

Prototype L4_C Algorithm

Primary Output: NEE (g C m⁻² d⁻¹); Optional: SOC (≤5cm depth, kg C m⁻²); R_{eco} (g C m⁻² d⁻¹)

3

1

2 C source (+)

NEE for NSA-OBS Ameriflux Site

g C m ⁻² d⁻¹ -1 C sink (-) -2 -3 2/10 3/21 4/30 6/9 7/19 8/28 10/7 11/16 12/26 1/1 L4_C algorithm using MODIS - AMSR-E inputs BIOME-BGC simulations using local meteorology Tower CO₂ eddy flux measurement results

Pan-arctic NEE (left) produced using L4_C algorithms with MODIS GPP (MOD17) & AMSR-E (6.9GHz) SM and T inputs. The graph (above) shows the 2004 seasonal pattern of daily NEE for a mature boreal conifer stand as depicted by the L4_C algorithm, BIOME-BGC model and tower CO₂ flux measurements. SMAP L4_C resolution/sampling will allow characterization of surface processes commensurate with the measurement footprint & accuracy of tower flux measurements: ~10km spatial resolution, daily temporal fidelity, NEE \leq 30 g C m² yr¹ RMSE.

L4_C Implementation Options

Options:

- Compute NEE using SMAP (L3_SM_A/P, L3_F/T), ¹GMAO (T) and MODIS GPP inputs directly;
- Compute NEE using L4_SM (T, SM) and satellite based GPP inputs;
- Implement enhanced GPP using model assimilation of MODIS GPP.
- Include L4_C intermediate variables as additional products (SOC, R components).

Ancillary data needs

Static:

- Land cover classification (minimum 5-classes distinguishing major boreal/arctic biomes);
- Mask (ID land-ocean boundaries, open water bodies & areas where L4_C accuracy requirements can be met);

Dynamic:

- Surface (≤5cm depth) soil moisture (daily); Source: L4_SM;
- Surface soil temperature (daily); Source: L4_SM;
- GPP (8-16 day; g C m⁻² d⁻¹); Optional sources: MODIS (MOD17), AVHRR, NPP/NPOESS; model assimilation.

SMAP L4_C Error Budget

Estimated uncertainty (RMSE) for SMAP L4_C based NEE

Type of Error	Error Source	Source Units	Range	Value	NEE Contribution (g C m ⁻² y ⁻¹)
Input Data	Temperature	°C	1.5-4	3.5	2.1
	Moisture	vol. cm ³ cm ⁻³	0.04-0.10	0.05	1.9
	GPP	g C m ⁻² d ⁻¹	1.0-2.0	1.5	4.4
Model Parameterization	Optimal Decomp. Rates/Response Curves	d-1	0.001-0.01	0.0015	0.2
	Pool Representation/Steady State	g m-2	100-1000	500	12.0
	Autotrophic Respiration fraction	dim.	0.05-0.15	0.1	1.5
Heterogeniety	Land Cover Heterogeniety (Soil Respiration)	g C m ⁻² yr ⁻¹	10-95	95	25.0
Total NEE Error	Inputs Only	g C m-2 yr-1			5.2
	Model Only	g C m ⁻² yr ⁻¹			12.1
	Inputs + Model	g C m ⁻² yr ⁻¹			13.2
	Inputs + Model + Het.	g C m ⁻² yr ⁻¹			28.7

<u>**Target accuracy</u>**: NEE RMSE ≤30 g C m⁻² yr⁻¹</u>

Planned L4_C calibration and validation

Pre-launch:

- Assess accuracy of SM & T inputs (from L4_SM product) over L4_C northern (≥ 45°N) domain;
- Algorithm sensitivity studies using available GPP (MODIS, model assimilation), SM & T (GMAO, AMSR-E, SMOS, PALSAR) inputs;
- Initialization/calibration/optimization of L4_C algorithm parameters (e.g. BPLUT, SOC pools);

Post-launch:

- Verify SMAP L4_C NEE accuracy using CO₂ data from northern FLUXNET sites;
- Model assimilation studies through GMAO-LIS & application community (NASA-TOPS, NOAA-CarbonTracker);

L4_C Test using MODIS & AMSR-E Inputs

Global Biophysical Station Networks

Alectra
 USDA-SCAN
 NRCS-SNOTEL
 FLUXNET
 WMO

Background: ESRI World Imagery

Calibration of L4_C parameters using FLUXNET

• Baseline L4_C algorithm parameterized for general biomes and assumptions of dynamic equilibrium between GPP and R under average climate conditions, but succession and disturbance can push ecosystem from steady-state;

 Parameterization error contributes ~30% of total L4_C uncertainty;

• CO₂ measurements from global observation networks (FLUXNET) can be used for model calibration and to account for non steady-state conditions;

• Without model-tower calibration, baseline L4_C algorithm is still within targeted accuracy requirements (≤30 g C m⁻² yr⁻¹).

 Table 2.
 General Biome Properties Look-up Table (BPLUT) describing

 ecophysiological parameters for L4
 C model calculations.

^A Land cover	^B C _{fract} (DIM)	^C CUE (DIM)	^C R _a :GPP (DIM)
Tundra (OSB)	0.72	0.54	0.46
Evergreen forest	0.49 🕏	0.54	0.46
Mixed Forest	0.59	0.54	0.46
Grassland	0.76	0.6	0.6

A <u>MODIS IGBP</u> global land cover classification (<u>Friedl</u> et al. 2002) for dominant boreal/tundra vegetation classes: Tundra or open <u>shrubland</u> (OSE); Grassland; Evergreen <u>needleleaf</u> coniferous forest; Mixed broadleaf deciduous and evergreen <u>needleleaf</u> coniferous forest types;

BProportional NPP allocation to metabolic and structural (1-Cfrat) SOC pools from Potter et al. (1993) and Ise and Moorcroft (2006);

Carbon Use Efficiencies (NPP: GPP) and corresponding RaiGPP ratios for representative boreal and grassland ecosystems from Gifford et al. (2003).

¹ Baldocchi, 2008. Australian J. Bot.

Heterogeneity contribution to L4_C uncertainty

• Land cover (LC) heterogeneity contributes more than half of total L4_C uncertainty.

• Significant (up to ~50%) error reduction could be achieved by implementing L4_C algorithms at finer spatial scale (e.g. up to 1km based on LC, L3_F/T and MODIS GPP inputs).

• Baseline 10-km L4_C algorithm resolution still within targeted accuracy requirements (≤30 g C m⁻² yr⁻¹).

LC Weighted – LC Dominant R flux

-	Land Cover (MODIS) Heterogeneity Contribution to NEE (RMSE)				
			Value		
	Dom. LC >	Area (RMSE) NEE Contrib. NEE tota		NEE total	
_	(%)	(%)	(g C m ⁻² y ⁻¹)	(g C m ⁻² y ⁻¹)	(g C m ⁻² y ⁻¹)
	30	96.7	95	25	28.7
	50	66.9	69	19	22.3
	70	34.7	41	11	17.2
-	90	12.3	17	4.6	13.9

Land Cover (MODIS) Hotorogeneity Contribution to NEE (DMSE)

Potential Applications of L4_C Results

Climate Change:

Monitoring of patterns, variations & anomalies in CO₂ source/sink activity; vegetation, moisture & temperature effects on carbon uptake and release.

Forestry and Agriculture:

Carbon sequestration assessment and monitoring; net productivity; drought impacts, disturbance & recovery; Spatial-temporal extrapolation of in situ observations.

Environmental Policy:

Regional carbon budgets; carbon accounting and vulnerability assessments.

SMAP ApWG: http://smap.jpl.nasa.gov/science/applicWG/

Observations to Applications: Quantify Carbon source-sink activity in **Boreal Landscapes**

Post-launch: L4_C model assimilation to quantify boreal C source-sink activity

- Apply L4_C products within carbon data assimilation system for tracking global CO₂ exchange and net C source/sink activity;
- Atmospheric perspective based on atmospheric transport model (TM3) constrained by satellite remote sensing and sparse surface observations:
- Accounts for fossil-fuel and fire related CO₂ emissions;
- Currently uses 1-degree CASA land model to define landatmosphere C exchange (NEE);
- Provides means to quantify boreal Carbon source/sink activity (SMAP Decadal Survey objective);

Annual C balance

Results Summary (all units PgC/yr) Year First Guess Estimate Fire Emission Fossil Emission Total Flux

2000	-0.30 ± 1.67	-1.37 ± 1.35	0.15	0.11	-1.11 ± 1.35
2001	-0.25 ± 1.67	-1.18 ± 1.33	0.11	0.11	-0.96 ± 1.33
2002	-0.24 ± 1.80	-1.25 ± 1.38	0.25	0.11	-0.89 ± 1.38
2003	0.02 ± 1.61	-0.86 ± 1.25	0.38	0.11	-0.37 ± 1.25
2004	0.01 ± 1.69	-1.07 ± 1.32	0.15	0.12	-0.80 ± 1.32
2005	-0.03 ± 1.57	-1.12 ± 1.25	0.11	0.12	-0.89 ± 1.25
2006	-0.16 ± 1.72	-0.98 ± 1.21	0.14	0.12	-0.71 ± 1.21

http://www.esrl.noaa.gov/gmd/ccgg/carbontracker/index.html

Planning for SMAP field campaigns to address L4_C issues:

- Focus on Northern (>45°N) land areas;
- Resource availability, including field, airborne, satellite and model components;
- Objectives (SM & T scaling properties; L4_SM accuracy; LC/terrain/open water heterogeneity & biomass effects on L4_SM & L4_C uncertainty);
- Canadian (CSA led) participation;
- Coordination with other missions (DESDynI, SMOS) and field campaigns (VuRSAL).

Pre-launch data assembly for L4_C development, testing & evaluation:

- L4_C inputs: SM & T (GMAO-LIS), GPP (MODIS), Ancillary (e.g. LC, mask definition to define areas where accuracy reqs. can be met);
- In situ biophysical & surface meteorology data (e.g. FLUXNET, WMO)
- Algorithm test-bed software and database development at JPL

Implementation options for L4_C algorithms:

• Continuity of EOS Terra/Aqua MODIS MOD17 GPP vs alternative sources (NPP, AVHRR, model assimilation);

Spatial resolution and gridding:

- Finer spatial scale implementation to improve L4_C accuracy;
- Consistent projections for SMAP products & ancillary data (e.g. polar vs global; projection options: EASE-grid, etc..).

Pre-launch L4_C algorithm development (2009-13):

- Draft L4_C ATBD development (Jan 09);
- ATBD external review (May/Jun 09);
- Final ATBD describing L4_C algorithms; (early 2010)
- L4_C sensitivity and Cal/Val studies;
- Production & operational implementation of L4_C science code;
- Initialization of L4_C algorithms;

Post-launch L4_C implementation and operations (2013-2015):

- Re-initialization, calibration and refinement of algorithms using SMAP inputs;
- Validation/documentation of L4_SM inputs to L4_C algorithms for northern (≥45°N) test sites;
- Operational production of L4_SM and L4_C products;
- Validation/documentation of L4_C accuracy in relation to mission requirements;
- Refinement and reanalysis of L4_C product stream;