Proposal for establishing an In Situ Testbed

Michael Cosh
Hydrology and Remote Sensing Laboratory
USDA-ARS
Beltsville, MD 20705
Why do we need a testbed?

1. Co-location and comparison of multiple in situ technologies

2. How do measurement techniques with different scales compare?

3. Investigate profile measurement comparison (how do we extend surface measurements to root zone)

4. How to different installation techniques affect measurements?
Measurement Scales

- **Long Term**
 - Satellite Scale: 100 km
 - Field Scale: 1 km
 - Vehicle: SMAP

- **Short Term**
 - Satellite Scale: 5 km
 - Field Scale: 200 m
 - Vehicle: Aircraft

- **Measurement Scale**
 - Satellite Scale: 50 cm
 - Field Scale: 5 cm
Measurement Methods-Gravimetric

Individual
- Gravimetric Collection
- Neutron Probes

What are the pertinent depths?
- 0-1 cm
- 0-5 cm

How do we extend the measurements through the vadose zone?
Measurement Methods-Automated

Automated
 TDRs
 FDRs: Hydras, Thetas, Echo
 Capacitance: Sentek
 GPS
 COSMOS

At what depths?

Orientations?

Replications?

Reporting increment?

Instantaneous or averaged?
Measurement Methods - Intensive Campaigns

Intensive
 Truck/Tower Mounted
 UAV
 Aircraft
 Satellite

What types of coordinated activity should there be?

How big should the test bed be?

Is it necessary to have this site embedded in a validation site?
To be Decided

Monitoring Depths and Replications
 Depths: 5, 10, 20, 50, 100 cm?

Size of Testbed?

Sampling Frequency?

Land cover type?

Multiple Sites?

Where?
Ideal Nested Testbed

- Field Scale
 - 16 Stations
- Multi-Field Scale
 - +11 Stations
- Watershed
 - +19 Stations
- Regional
 - +16 stations

= 62 sites total
Permanent, Semi-Permanent, and Temporary Sites

- **Permanent**
 - Measurement Duration: Years
 - Cost: $15K

- **Semi-Permanent**
 - Measurement Duration: Months
 - Cost: $2K

- **Temporary**
 - Measurement Duration: Months
 - Cost: $2K