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/. SMAP Core Validation Site Design

Establishing Core sites
Design

Requirements
Considerations
Timeline

Combine SM and FT?



Core Site Definition

* A network of sensors with adequate replication

 Three nested levels of extent (3, 9, and 36 km)

e Sensor and scaling verified using gravimetric
method

 Infrastructure support through 2016

 Formal arrangement with the SMAP project



. SMAP Core Validation Site Design

e Establishing Core sites

-Infrastructure
US
eFormal mission partners

-Regional representation
-Geographic/climate diversity
-How many?



/ Example: AMSR-E U.S. Soil Moisture Validation Sites
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SMAP Core Validation Site Design

e Design
-Replication
-Multiple/nested scales (3, 9, 36 km?)
-Grids and products



Development of Paired Soil Moisture Sampling Networks
for Satellite and Model Validation
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Example: Characterizing the Walnut Creek Watershed
/ Area in SMEX02
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Example: Are 6 Points Enough? Regional Samg
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SMAP Core Validation Site Design

e Design
-Replication: More than 1How many depends upon
variability and precision. Considering costs and logistics,
6-9 may be a reasonable minimum.
-Multiple/nested scales (3, 9, 36 km?)
-Grids and products



A |

SMAP Core Validation Site Design

e Design 3
-Replication )
-Multiple/nested scales (3, 9, 36 km?, 9+ 5
-Grids and products 3,
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. SMAP Core Validation Site Design

e Design
-Replication
-Multiple/nested scales (3, 9, 36 km?)
-Grids and products
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. SMAP Core Validation Site Design

e Design
-Replication
-Multiple/nested scales (3, 9, 36 km?)
-Grids and products

For validation, should we know the
grid before we initiate new sites
and start to scale existing
networks?
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. SMAP Core Validation Site Design

 Requirements
-Verified estimate (gravimetric standard) of the 0-5 cm
soil moisture and temperature
-Verified estimate of the 0-100 cm soil moisture
-Near real time

-All data available to the validation team
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. SMAP Core Validation Site Design

e Considerations
-Co-location with other networks
-Measurement testbed
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. SMAP Core Validation Site Design

 Timeline
-June 2010: 40 km scale established for all sites
-June 2010: SMAPVEX site(s) fully instrumented
-Fall 2012: All installations verified
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_ SMAP Core Validation Site Design

e Other?
e Candidates?
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Possible Core Sites for SM

ARSWatersheds
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SMAP Algorithms & C




Cal/Val activities address algorithm accuracy requirements
i

L3 F/T:

Obtain measurements of binary F/T transitions in boreal (245N) zones with =280%
spatial classification accuracy (baseline); capture F/T constraints of boreal C
fluxes consistent with tower flux measurements.

L4 Carbon:

Obtain estimates of land-atmosphere CO, exchange (NEE) at accuracy level
commensurate with tower based CO, Obs. (RMSE =30 g C m2yr?).




Priorities for L3_F/T & L4 C Cal/Vval
I

Pre-launch:
» Define domain & conditions where products meet accuracy requirements;
» Define candidate sites, tradeoffs for product validation;
* Final selection, justification of baseline algorithms;
» Define L-band dB reference states & temporal stability over product domain for
L3 _F/T algorithm implementation;
 Calibrate L4 _C algorithm parameters;

Post-launch:
 Product validation relative to accuracy requirements;
* Re-calibrate & define model parameters & reference states using SMAP inputs;
» Carbon model assimilation of L4 _C products to quantify boreal carbon
source/sink activity (NRC objective);



Optimal L3_F/T validation site design
I

* Represent major land cover, climate regimes for nor  thern (>45N) land areas
» Boreal evergreen needle-leaf forest, tundra, grassland
 Disturbance and stand succession impacts

» Capture microclimate heterogeneity within 1-3 km se nsor FOV
» Select sites with relatively homogeneous land cover, terrain conditions.
e Distributed measurements to capture sub-grid scale temperature variability
« Continuous measurements to characterize diurnal and daily variability

* Represent F/T transitions of major landscape elemen ts
* Snow, vegetation and surface solil layer

 Coincident measurements of surface meteorology & H  ,0, CO, fluxes
e Enable freeze-thaw & water, energy & carbon cycle linkages



Optimal L4_C validation site design
|

» Characterize major biomes within northern land area s
» Boreal evergreen needle-leaf forest, tundra, grassland
 Disturbance & stand succession impacts

* Representative conditions within 10 km grid cell
» Select sites with relatively homogeneous land cover, terrain conditions;
« Continuous measurements to characterize daily variability & cumulative annual
C fluxes;

 Documented uncertainty (systematic & random error) in C flux measurements
 Established and well defined protocols for correction & gap filling to establish
complete annual C flux time series;
» Multi-year time series to establish average conditions & year-to-year variability;

 Coincident measurements of surface meteorology & H  ,0, CO, fluxes
* Enable analysis of water, energy & carbon cycle linkages;
* Measurements of component C fluxes (GPP, R,.,, NEE) & environmental
controls (SM and soil T, surface SOC).

eco’



Application of WMO Global Station Network for L3 _F/T Validation
i

* Assumes T , is effective
surrogate for F/T & land
cover & terrain primarily
influence microclimate
variability within grid cell;

Terrain Heterogeneity within 25km grid cell S

* Numerous (>1500) sample
sites; standardized global
data collection/formatting;
widely available, low cost &
low latency;

Low * 0.000000- 14.800000
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« Limited array of i
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Alaska Ecological Transect (ALECTRA)
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FLUXNET: Global tower eddy covariance measurement network
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» Regional representation of CO ,, H,0 fluxes
approaching scale of satellite observations;

» Supporting biophysical measurements of critical

variables (SM, soil T, meteorology, energy budget) ; -
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» ~ 215 site years representing major northern (>45N)
biomes;

[ 7 - Gpen Shrublands.
B & - Vvoody Savannas
<[] 9- savannas

[ ]10-Grassland

[ 11 - Permanent wetiands
Il 2 - Croplands

[ 3 - Urban and built-up

A [ 14 - Cropland/Natural Vegetation Mosaic
@ F‘Ln'-:fNEr e [ 15- Permanent snow and ice
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» ~7 of these are EOS core land validation sites;

* Disturbance (fire) and succession processes
represented,;

» Well defined measurement protocols & accuracy with
regional consistency;

* Online data archival and distribution through NASA
DAAC: http://daac.ornl.gov/IFLUXNET.




