SMAP/VAL Workshop Oxnard, California 3-5 May 2011

APPLICATIONS OF THE GROUND BASED RADIOMETERS ON SOIL MOISTURE RESEARCH IN VIETNAM

Prof. Doan Minh Chung Director, Space Technology Institute (STI) Vietnam Academy of Science and Technology (VAST)

- 1. Brief introduction of the Space Technology in Vietnam
- 2. Applications of MW Radiometers for research soil moisture (SMC) & SST, SSS
- 3. Proposals for international cooperation

"STRATEGY FOR SPACE RESEARCH & APPLICATIONS UNTIL 2020"

- Adopted : in November 2006, by Prime Minister of Vietnam
- Objectives of the strategy :
- 1 Receive then master the satellite technology until 2020
- 2. Promote applications of RS & GIS for natural resource, environment & disaster management
- 3. Develop infrastructure for space technology including: establish Space Technology Institute under VAST (11/2006), establish Vietnam Space Committee under Government (9/2010), develop ground stations, centers for satellite image processing, satellite -based communication and positioning systems, earth observation systems;
- 4. Promote the capacity building on human resource in space science and technology
- 5. Promote international and regional cooperation on space S&T

SOME RECENT ACTIVITIES

Vietnam Space Center-HHTP

 Project for construction of VN Space Center (9ha) with blocks of R&D, AIT, test, small EO satellite, Training, Ground station, etc.

Plan to develop & launch 2 EO
 Satellite (01 radar & 01 Optical) until
 2020 with the support of Japan

 Financial source: Japanese ODA and Vietnamese budget

Tentative duration of the Project:
 2012-2020

Cooperation between Lockheed Martin Corp. – VNPT for manufacture & launch Communication Satellite VINASAT-1

- Mass: 2.800 kg. Height: 4 m.
- •Launched 19/4/2008 by Ariane 5 from Kourou (French Guiana).
- •Located: Geostationary orbit at 132⁰E.
- •Lifetime: at least 15 years.

12 transponders: 4 for KU - band, 8 for Extended C-band.
Planned 2012: complete manufacture & launch VINASTA-2 with 20 transponders

Cooperation with Astrium EADS for VNREDSAT-1 project (Vietnam EO small satellite for natural resource, Environment & Disaster Management)

- -Low orbit EO satellite, M = 120kgs
- Optical payload with spatial resolution : 10m/Multispectral and 2.5m/Panchromatic
- Revisit time: 3 days
- Sun synchronous orbit, altitude 680 km
- Life time : 5 years
- The Project's budget opened 11/2010
- -Team of 15 VN engineers will arrive Toulouse for training: 8/2011
- Tentative launched: 2013 2014

VNREDSAT-1 Project The Project is underway

National Research Program on Space Science and Technology

Purpose: Promote human resource & infrastructure on Space S&T of Vietnam

- From 2008-2010: MOST VAST funded ~ 1.5 millions USD for 17 research projects with the main topics:
- Small satellite technology.
- GPS, launching techniques.
- RS,GIS applications for natural resource, environment & disaster management
- Legislation basis for peaceful use of outer space.
- Instruments and ground receiving station technique.
- Fundamental research on space science and technology.

Project topics have been approved:

- Simulation and software for small satellite technology
- Testbeds for testing vibration, posture of small satellite
- Optical payload low resolution
- Highly accurate GPS applications for construction
- GRASS software for images processing
- Magnetic sensors used for spacecraft control
- Launching technique
- Research on a legal framework for peaceful use of outer space
- Energy transference from space
- Nano materials used in space environment
- Soil moisture monitoring using A/P remote sensing ?

Cooperation with Bulgarian Academy of Sciences for manufacture of MW Radiometers

MW Radiometers (L,C,X-bands) of STI, VAST - 2010

Applications of RDMs for research of soil moisture, vegetation water content & SST, SSS

Since 2000 – 2010: design and manufacture 03 microwave radiometers (L, C, X bands).

RDM type	L - band	C - band	X -band			
Frequency	1.4 GHz	3.5 – 3.7 GHz	10.9–11.2 GHz			
Bandwidth	<40 MHz	<30 MHz	<30 MHz			
Sensitivity	<0.3K	<0.3K	<0.3K			
Integ.time	1 s	1 s	1 s			
Antenna beam width	30 ⁰	15 ⁰	17 ⁰			
Input range	0-320 K	0 – 320 K	0 – 320 K			

MW Radiometers

Develop hardware & software for:

- Programmed control Antenna (Incident, Azimuth angles)
- Automatic receiving & processing data from radiometers
- Integration GPS signal to RDM data processing

Software for RDM data receiving and processing

Applications of radiometers (RDMs) for RS of soil moisture in STI, VAST Vietnam

> 2000 – 2011: Manufacture RDMs & investigate them:

- Soil moisture monitoring
- Vegetation water content (rice, corn)
- Sea surface temperature (SST), salinity (SSS)
- Aerial remote sensing of soil moisture (SM mapping)

Experiment on rice & corn field

PASSIVE MW RS OF SOIL MOISTURE CONTENT (SMC) Flowchart to estimate SMC (RDMs – Model)

Program for automatic receive & process "on-line" data measured from RDMs - Radiometer 4.0

Models for compute SMC based on measured data of radiometers

Schmugge and Choudhury

 $T_{Bp}(\theta) = [1 - R_p(\theta)] T_{eff}(\theta),$

• Brightness Temperatue of soil $(T(z) = T_s)$

$$T_{Bp}(\theta) = e_p(\theta)T_S = [1 - R_p(\theta)]T_S,$$

• Fresnel equation:

$$R_{h}(\theta) = \left| \frac{\cos\theta - \sqrt{\varepsilon - \sin^{2}\theta}}{\cos\theta + \sqrt{\varepsilon - \sin^{2}\theta}} \right|^{2},$$
$$R_{v}(\theta) = \left| \frac{\varepsilon \cos\theta - \sqrt{\varepsilon - \sin^{2}\theta}}{\varepsilon \cos\theta + \sqrt{\varepsilon - \sin^{2}\theta}} \right|^{2}.$$

• Model dielectric coefficient Wang- Schmugge $\varepsilon = \varepsilon(Wc,T)$

$$\varepsilon = \varepsilon' + i. \varepsilon'' = \varepsilon (W_s, SF, CF, SLF, P)$$

$$W_s < W_t \rightarrow \varepsilon = m_v \varepsilon_x + (P - m_v) \varepsilon_a + (1 - P) \varepsilon_r,$$

$$W_s > W_t \rightarrow \varepsilon = W_t \varepsilon_x + (m_v - W_t) \varepsilon_w + (P - m_v) \varepsilon_a + (1 - P) \varepsilon_r$$

Program for computation of SMC with model Wang-Schmugge

File WS_S	SM_Site1.	XLS															22
Experimenta	l field: Gia L	am distric	- Site 1(No	vember 9, 2	2008)												
	0	0		0.6 T								11 0		1		1	
	Angle = Emiss_h	0 VSMeet		İ	_	Delta l	—— Dei	lta 2									
Exp. data	0.6098			- I		—— Delta 3	— * — Del	20020									
						🔶 Delta S	Dei	lta6									
	0.6555	0.445		20.4 E				-									
	0.636	0.480		🛱 0.2 -		and a second											
	0.626	0.495		1												-	
		#DIV/0!		0.0 ******		****]
	0.590	#DIV/0!		0.0	0.1	0.2 0.3	3 0.4	0.5									
						VSM [g/cm3]											
00 00 00 00		8.57			[B]												
Input data	a –	Freq, Hz															-
Freq, GHz :	3.5	3.50E+09	EPSr'=	5.5		Pure wate	er dielectr	ic model (:	see Ulaby	z et al., vo	l. 3, (E.14)-(E.19))					1.1
Temp, °C ₌	34		EPSr" =	0.2		EPSw0(T)	TAUw(T)	ZNAM	EPSw	EPSw"		(**X*) (C.N.M.					
SF, % =	23		EPSi'=	3.2		75.095	6.565E-12	1.021	73.662	9.927			1				2-
CF, % =	37		EPSi" =	0.1		WP	FC	G	WT	Р							8
BD, g/cm3	0.9	Angle, rad	EPSa'=	1		0.230	0.432	0.350	0.278	0.660			į				
Angle, deg	0	0.000	EPSw~=	4.9													
h =		Dev (cm) =	1										H-pol	H-pol	V-pol	V-pol	V-pol
lamda	8.57												smooth	rough	smooth	rough	smooth
Wc=VSM			EPS'x,r2		EPS's	and the second se		C=cos(tita]		Re(B)	lm(B)	Re(Sqrt(B)	EMISSh	EMISSh,r	and the second se	Re(GAMA)	and the second second second
0	3.20	0.10	27.86		2.53	0.07	0.000	1.000	2.529	2.528		in the second seco		0.958	0.052	0.042	0.948
0.01	4.09	0.22	27.86 27.86	Contraction of the California	2.56 2.61	0.07	0.000	1.000	2.560	2.559 2.608				0.956	0.053	0.044	0.947
0.02	4.90	0.35	27.86		2.67	0.07	0.000	1.000	2.609	2.600		100000000000000000000000000000000000000		0.955	0.055	0.045	0.945
0.04	6.75	0.60	27.86		2.76	0.09	0.000	1.000	2.760	2.758		1010 TT 171 TT	0.938	0.949	0.062	0.051	0.938
0.05	7.64	0.72	27.86	3.54	2.86	0.10	0.000	1.000	2.862	2.860			0.934	0.946	0.066	0.054	0.934
0.06	8.53	0.84	27.86		2.98	0.12	0.000	1.000	2.982	2.980			0.929	0.942	0.071	0.058	0.929
0.07	9.42	0.97	27.86	3.54	3.12	0.14	0.000	1.000	3.120	3.118	0.136	1.766	0.923	0.937	0.077	0.063	0.923

2007-2008: Integration of GPS to RDMs; Aerial RS for soil moisture mapping

- Measured spectrum of Tb registered by Cband RDM from helicopter

- Soil moisture map of rice field areas - Hanoi

Measurement of SST with Radiometers & Validation by MODIS image (2005-2006)

Radiometer calibration with Blue sky

Receiving data on ship board

Measure SSS

Measure wind speed & coordinates by GPS receiver

Validation SST with MODIS image

PROPOSAL FOR COOPERATION ON SPACE SCIENCE & TECHNOLOGY WITH NASA & OTHERS

Main topics:

- Satellite technology R&D
- Space Applications (climate change, natural resource, environment & disaster management); SMAP/VAL campaign
- Space science & education (Universities/ engineers, Mas, PhD)
- Capacity building (exchange, trainings, joint projects)
- Space legislation

Proposals:

- 1. "Research on the Active/Passive Remote sensing technology and applications for soil moisture monitoring" USDA-STI/VAST
- 2. "Estimation of the relation between forestry cover with natural hazards in mountainous areas using RS & GIS" Michigan State University STI/VAST

Cooperation: Governmental, Academic, Institution, Join project, professor visiting, Conference, Exchange (ODA, Trade source, self-financial budget)

Contact us: www.sti.vast.ac.vn

dmchung@sti.vast.ac.vn chung_sti@yahoo.com

INFORMATION NOTE: UN/VAST Workshop "Space Technology Applications for Socio-Economic Benefits" held in Hanoi, Vietnam from 10-14/10/2011.

Co-organized: UN-VAST / ESA – ISPRS - NASA Registration deadline: 31/8/2011

Website: <u>http://www.unoosa.org;</u> or <u>www.sti.vast.ac.vn/conference</u> Contact points: <u>Levent.Canturk@unvienna.org</u> (UNOOSA) <u>dmchung@sti.vast.ac.vn</u> (Local Organizers)

THANK YOU FOR YOUR ATTENTION