APPLICATIONS OF THE GROUND BASED RADIOMETERS ON SOIL MOISTURE RESEARCH IN VIETNAM

Prof. Doan Minh Chung
Director, Space Technology Institute (STI)
Vietnam Academy of Science and Technology (VAST)
1. Brief introduction of the Space Technology in Vietnam
2. Applications of MW Radiometers for research soil moisture (SMC) & SST, SSS
3. Proposals for international cooperation
“STRATEGY FOR SPACE RESEARCH & APPLICATIONS UNTIL 2020”

- **Adopted**: in November 2006, by Prime Minister of Vietnam

- **Objectives of the strategy**:

 1. Receive then master the satellite technology until 2020
 2. Promote applications of RS & GIS for natural resource, environment & disaster management
 3. Develop infrastructure for space technology including: establish Space Technology Institute under VAST (11/2006), establish Vietnam Space Committee under Government (9/2010), develop ground stations, centers for satellite image processing, satellite -based communication and positioning systems, earth observation systems;
 4. Promote the capacity building on human resource in space science and technology
 5. Promote international and regional cooperation on space S&T
SOME RECENT ACTIVITIES

Vietnam Space Center– HHTP

- Project for construction of VN Space Center (9ha) with blocks of R&D, AIT, test, small EO satellite, Training, Ground station, etc.
- Plan to develop & launch 2 EO Satellite (01 radar & 01 Optical) until 2020 with the support of Japan
- Financial source: Japanese ODA and Vietnamese budget
- Tentative duration of the Project: 2012-2020
Cooperation between Lockheed Martin Corp. – VNPT for manufacture & launch Communication Satellite VINASAT-1

- Mass: 2.800 kg. Height: 4 m.
- Launched 19/4/2008 by Ariane 5 from Kourou (French Guiana).
- Located: Geostationary orbit at 132°E.
- Lifetime: at least 15 years.
- 12 transponders: 4 for KU-band, 8 for Extended C-band.
- Planned 2012: complete manufacture & launch VINASTA-2 with 20 transponders
Cooperation with Astrium EADS for VNREDSAT-1 project
(Vietnam EO small satellite for natural resource, Environment & Disaster Management)

- Low orbit EO satellite, M = 120kgs
- Optical payload with spatial resolution: 10m/Multispectral and 2.5m/Panchromatic
- Revisit time: 3 days
- Sun synchronous orbit, altitude 680 km
- Life time: 5 years
- The Project’s budget opened 11/2010
- Team of 15 VN engineers will arrive Toulouse for training: 8/2011
- Tentative launched: 2013 – 2014
VNREDSAT-1 Project
The Project is underway
National Research Program on Space Science and Technology

Purpose: Promote human resource & infrastructure on Space S&T of Vietnam

From 2008-2010: MOST - VAST funded ~ 1.5 millions USD for 17 research projects with the main topics:

- Small satellite technology.
- GPS, launching techniques.
- RS, GIS applications for natural resource, environment & disaster management
- Legislation basis for peaceful use of outer space.
- Instruments and ground receiving station technique.
- Fundamental research on space science and technology.
Project topics have been approved:

- Simulation and software for small satellite technology
- Testbeds for testing vibration, posture of small satellite
- Optical payload low resolution
- Highly accurate GPS applications for construction
- GRASS software for images processing
- Magnetic sensors used for spacecraft control
- Launching technique
- Research on a legal framework for peaceful use of outer space
- Energy transference from space
- Nano materials used in space environment

- Soil moisture monitoring using A/P remote sensing?
Cooperation with Bulgarian Academy of Sciences for manufacture of MW Radiometers
Applications of RDMs for research of soil moisture, vegetation water content & SST, SSS

<table>
<thead>
<tr>
<th>RDM type</th>
<th>L - band</th>
<th>C - band</th>
<th>X - band</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency</td>
<td>1.4 GHz</td>
<td>3.5 – 3.7 GHz</td>
<td>10.9–11.2 GHz</td>
</tr>
<tr>
<td>Bandwidth</td>
<td><40 MHz</td>
<td><30 MHz</td>
<td><30 MHz</td>
</tr>
<tr>
<td>Sensitivity</td>
<td><0.3K</td>
<td><0.3K</td>
<td><0.3K</td>
</tr>
<tr>
<td>Integ.time</td>
<td>1 s</td>
<td>1 s</td>
<td>1 s</td>
</tr>
<tr>
<td>Antenna beam width</td>
<td>30°</td>
<td>15°</td>
<td>17°</td>
</tr>
<tr>
<td>Input range</td>
<td>0-320 K</td>
<td>0 – 320 K</td>
<td>0 – 320 K</td>
</tr>
</tbody>
</table>

- Develop hardware & software for:
 - Programmed control Antenna (Incident, Azimuth angles)
 - Automatic receiving & processing data from radiometers
 - Integration GPS signal to RDM data processing
2000 – 2011: Manufacture RDMs & investigate them:
- Soil moisture monitoring
- Vegetation water content (rice, corn)
- Sea surface temperature (SST), salinity (SSS)
- Aerial remote sensing of soil moisture (SM mapping)
PASSIVE MW RS OF SOIL MOISTURE CONTENT (SMC)
Flowchart to estimate SMC (RDMs – Model)

Data measured from field trip
Ts, Tair, Tb(K) vs q
SF%, CF%, Bulk density BD: g/cm³

Define Dieltric Coefficient ε(WSi) of soil as for Model
Wang – Schmugge

Compute Fresnel reflec. coeff. from Fresnel equation Γ(th,ε)

Define soil emission eSI = 1-ΓI(th,ε)

Compare δ = |eS - eSI|

δ < 0.001

Then
Assign WS = WSI

Average & inform WS = AVG(WSI)

Informed FALSE

From data measured by RDMs, compute soil emission eS – after correction of the vegetation cover eV

Assign assumed variable Wsi = 0+i.0.1; i = 1,2,...
Program for automatic receive & process “on-line” data measured from RDMs - Radiometer 4.0
Models for compute SMC based on measured data of radiometers

- Schmugge and Choudhury
 \[T_{Bp}(\theta) = [1 - R_p(\theta)] T_{eff}(\theta), \]

- Brightness Temperature of soil \(T(z) = T_S \)
 \[T_{Bp}(\theta) = e_p(\theta)T_S = [1 - R_p(\theta)]T_S, \]

- Fresnel equation:
 \[R_h(\theta) = \left(\frac{\cos \theta - \sqrt{\varepsilon - \sin^2 \theta}}{\cos \theta + \sqrt{\varepsilon - \sin^2 \theta}} \right)^2, \]
 \[R_v(\theta) = \left(\frac{\varepsilon \cos \theta - \sqrt{\varepsilon - \sin^2 \theta}}{\varepsilon \cos \theta + \sqrt{\varepsilon - \sin^2 \theta}} \right)^2, \]

- Model dielectric coefficient Wang- Schmugge \(\varepsilon = \varepsilon(Wc,T) \)
 - \(\varepsilon = \varepsilon' + i \varepsilon'' = \varepsilon(W_s, SF, CF, SLF, P) \)
 - \(W_s < W_t \rightarrow \quad \varepsilon = m_\nu \varepsilon_x + (P - m_\nu)\varepsilon_a + (1 - P)\varepsilon_r, \)
 - \(W_s > W_t \rightarrow \quad \varepsilon = W_t \varepsilon_x + (m_\nu - W_t)\varepsilon_w + (P - m_\nu)\varepsilon_a + (1 - P)\varepsilon_r \)
Program for computation of SMC with model Wang-Schmugge

File WS_SM_Site1.XLS
Experimental field, Gia Lam district - Site 1 (November 9, 2008)

<table>
<thead>
<tr>
<th>Angle (°)</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Emiss_H</td>
<td>0.6098 #D12/01</td>
</tr>
<tr>
<td>Emiss_L</td>
<td>0.6555 #D12/01</td>
</tr>
<tr>
<td>Emiss_L</td>
<td>0.636 #D12/01</td>
</tr>
<tr>
<td>Emiss_L</td>
<td>0.626 #D12/01</td>
</tr>
<tr>
<td>Emiss_L</td>
<td>0.617 #D12/01</td>
</tr>
<tr>
<td>Emiss_L</td>
<td>0.590 #D12/01</td>
</tr>
</tbody>
</table>

Input data

<table>
<thead>
<tr>
<th>Freq. GHz</th>
<th>3.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temp. °C</td>
<td>34</td>
</tr>
<tr>
<td>SF. %</td>
<td>23</td>
</tr>
<tr>
<td>CE. %</td>
<td>37</td>
</tr>
<tr>
<td>BF. g/cm3</td>
<td>0.9</td>
</tr>
<tr>
<td>Angle, deg</td>
<td>0.2</td>
</tr>
<tr>
<td>lambda</td>
<td>8.57</td>
</tr>
</tbody>
</table>

Pure water dielectric model (see Ulaby et al., vol. 3, (E.14)-(E.19))

<table>
<thead>
<tr>
<th>Eps'</th>
<th>Eps''</th>
<th>Eps''''</th>
<th>Eps''''''</th>
<th>Eps''''''''</th>
<th>Eps''''''''''</th>
<th>Eps''''''''''''</th>
<th>Eps''''''''''''''</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.00</td>
<td>2.00</td>
<td>3.00</td>
<td>4.00</td>
<td>5.00</td>
<td>6.00</td>
<td>7.00</td>
<td>8.00</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Delta 1</th>
<th>Delta 2</th>
<th>Delta 3</th>
<th>Delta 4</th>
<th>Delta 5</th>
<th>Delta 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>WSM [cm教]</td>
<td>0.2000</td>
<td>0.4200</td>
<td>0.6300</td>
<td>0.8600</td>
<td>1.0900</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>H-pol</th>
<th>H-pol</th>
<th>V-pol</th>
<th>V-pol</th>
<th>V-pol</th>
<th>V-pol</th>
</tr>
</thead>
<tbody>
<tr>
<td>smooth</td>
<td>smooth</td>
<td>rough</td>
<td>rough</td>
<td>smooth</td>
<td>smooth</td>
</tr>
<tr>
<td>0.948</td>
<td>0.959</td>
<td>0.962</td>
<td>0.968</td>
<td>0.971</td>
<td>0.978</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>EMISSb</th>
<th>EMISSb</th>
<th>r</th>
<th>Re(E)</th>
<th>Im(E)</th>
<th>Re(Sq=E)</th>
<th>IM(Sq=E)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.948</td>
<td>0.959</td>
<td>0.962</td>
<td>0.968</td>
<td>0.971</td>
<td>0.978</td>
<td>0.983</td>
</tr>
</tbody>
</table>
2007-2008: Integration of GPS to RDMs; Aerial RS for soil moisture mapping
- Measured spectrum of Tb registered by C-band RDM from helicopter
- Soil moisture map of rice field areas - Hanoi
Measurement of SST with Radiometers & Validation by MODIS image (2005-2006)

- Radiometer calibration with Blue sky
- Receiving data on ship board
- Measure wind speed & coordinates by GPS receiver
- Measure SSS
- Validation SST with MODIS image
PROPOSAL FOR COOPERATION ON SPACE SCIENCE & TECHNOLOGY WITH NASA & OTHERS

Main topics:
- Satellite technology R&D
- Space Applications (climate change, natural resource, environment & disaster management); SMAP/VAL campaign
- Space science & education (Universities/ engineers, Mas, PhD)
- Capacity building (exchange, trainings, joint projects)
- Space legislation

Proposals:
1. “Research on the Active/Passive Remote sensing technology and applications for soil moisture monitoring” – USDA-STI/VAST
2. “Estimation of the relation between forestry cover with natural hazards in mountainous areas using RS & GIS” - Michigan State University – STI/VAST

Cooperation: Governmental, Academic, Institution, Join project, professor visiting, Conference, Exchange (ODA, Trade source, self-financial budget)

Contact us: www.sti.vast.ac.vn
dmchung@sti.vast.ac.vn chung_sti@yahoo.com
Registration deadline: 31/8/2011
Website: http://www.unoosa.org; or www.sti.vast.ac.vn/conference
Contact points: Levent.Canturk@unvienna.org (UNOOSA)
dmchung@sti.vast.ac.vn (Local Organizers)