History and Perspective of the International Soil Moisture Working Group and GEWEX

Peter J. van Oevelen
International GEWEX Project Office
gewex@gewex.org

International Soil Moisture Working Group

- 2005: Started under the IGOS-P IGWCO (Integrated Global Observing Strategy – Partnership /Integrated Global Water Cycle Observations theme)
- March 2006: First Workshop/Meeting, The Netherlands
- November 2007: Second Workshop/Meeting, China
- March 2009: Third Meeting, Lisbon, Portugal

Summary

GEWEX Project Organization

RADIATION

GRP GEWEX Radiation Panel (C. Kummerow; J. Schultz)

• BSRN	Baseline Surface Radiation Network (E. Dutton)
• CIRC	Continuous Intercomparison of Radiation Codes (L. Oreopoulos)
• GACP	Global Aerosol Climatology Project (M. Mishchenko)
• GPCP	Global Precipitation Climatology Project (R. Adler)
• ISCCP	International Satellite Cloud Climatology Project (W. Rossow)
• I3RC	Intercomparison of 3-D Radiation Codes (R. Cahalan)

- LandFlux Land Surface Fluxes (W. Rossow)
- RAMI Radiation transfer Model Intercomparison (J-L Widlowski)
- SeaFlux Sea-Surface Fluxes (C. Clayson)
- SRB Surface Radiation Budget Project (P. Stackhouse)
- WGDMA Working Group on Data Management and Analysis (W. Rossow)

Assessment Working Groups:

- Aerosols (S. Christopher; J. Reid)
- Clouds (C. Stubenrauch)
- Radiation (P. Stackhouse)

MODELING AND PREDICTION

GCSS/ GEWEX Cloud System Study (J. Petch; C. Bretherton) GABLS GEWEX Atmospheric Boundary Layer Study (B. Holtslag; G. Svensson)

- ACPC Joint GCSS/iLEAPS Project on Aerosols, Clouds, Precipitation and Climate (B. Stevens/GCSS: A. Meinrat/iLEAPS)
- DIME Data Integration for Model Evaluation (R. Rossow)

GCSS Working Groups

- Boundary Layer Clouds (A. Lock)
- Cirrus Cloud Systems (S. Dobbie)
- Cloud Climate Feedback
 - -- CFMIP-GCSS Intercomparison of LES and SCMs (M. Zhang; C. Bretherton)
- Cloud Microphysics (U. Lohmann)
- GCSS Pacific Cross-section Intercomparison (J. Teixeira)
- Polar Clouds (J. Pinto; H. Morrison)
- Precipitating Convective Cloud Systems (J. Petch)

GLASS Global Land/Atmosphere System Study (B. van den Hurk; M. Best)

- ALMA Assistance for Land-surface Modeling Activities
- GLACE-2 Global Land/Atmospheric Coupling Experiment (R. Koster)
- GSWP-3 Global Soil Wetness Project (T. Oki)
- LoCo Local land-atmospheric Coupling (B. van den Hurk)
- LUCID Land-Use and Climate, Identification of robust impact (A. Pitman)
- PILPS Project for the Intercomparison of Land-surface Parameterization

Schemes (A. Pitman)

HYDROCLIMATOLOGY

GHP GEWEX Hydroclimatology Panel (D. Lettenmaier; TBD) J. Polcher

Regional Hydroclimate Projects (RHPs)

- AMMA African Monsoon Multidisciplinary Analysis Project (T. Lebel)
- BALTEX Baltic Sea Experiment (H.J. Isemer)
- CPPA Climate Prediction Program for the Americas (J. Huang)
- HyMeX HYdrological cycle in the Mediterranean Experiment (P. Drobinski)
 LBA Large-Scale Biosphere-Atmosphere Experiment in Amazonia (J. Maia)
- LPB La Plata Basin Project (H. Berbery)
- MAHASRI Monsoon Asian Hydro-Atmosphere Scientific Research and Prediction Initiative (J. Matsumoto)
- MDB Murray-Darling Basin Water Budget Project (J. Evans)
- NEESPI Northern Eurasia Earth Science Partnership Initiative (P. Groisman)

Regional Studies

- Cold Region (T. Ohata)
- **High Elevation** (G. Tartari)
- Monsoon (J. Matsumoto; H. Berbery; W. Lau)
- Semi-arid (C. Fu)

Data Management

- Reference Sites, River Basins (S. Williams)
- Model Output (M. Lautenschlager)
- Satellite Data (T. Koike)
- Data Integration and Dissemination (T. Koike)
- Central Data Integration (T. Koike)

Cross-Cutting Studies

- Water and Energy Budget Studies (K. Yang)
- Extremes (R. Stewart)
- Isotopes (D. Noone; K. Yoshimura)
- Aerosols (W. Lau)

Modeling Studies

- Global Models (M. Bosilovich)
- Regional Models
 - Inter-Continental Transferability Study (B. Rockel)
 - Scale Interaction Evaluation Experiment (R. Arritt)
- Land Surface Models (M. Rodell)
- Hydrologic Applications Project (E. Wood)

Affiliated Global Organizations

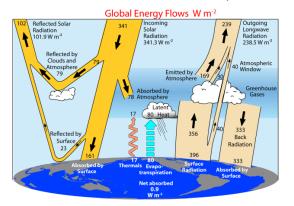
- GPCC Global Precipitation Climatology Centre (U. Schneider)
- GRDC Global Runoff Data Centre (U. Looser)

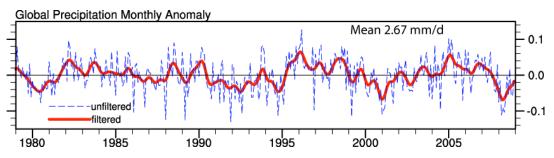
Imperatives: Headlines

- Datasets: Foster development of climate data records of atmosphere, water, land, and energy-related quantities, including metadata and uncertainty estimates.
- Analysis: Describe and analyze observed variations, trends and extremes (such as heat waves, floods and droughts) in water and energy-related quantities.
- **Processes:** Develop approaches to improve process-level understanding of energy and water cycles in support of improved land and atmosphere models.
- Modeling: Improve global and regional simulations and predictions of precipitation, clouds, and land hydrology, and thus the entire climate system, through accelerated development of models of the land and atmosphere.
- Applications: Attribute causes of variability, trends and extremes, and determine the predictability of energy and water cycles on global and regional bases in collaboration with the wider WCRP community.
- Technology transfer: Develop diagnostic tools and methods, new observations, models, data management, and other research products for multiple uses and transition to operational applications in partnership with climate and hydrometeorological service providers.

5

Capacity building: Promote and foster capacity building through training of scientists and outreach to the user community.


Example: Imperatives: 1


DATASETS: Foster development of climate data records of atmosphere, water, land, and energy-related quantities, including metadata and uncertainty estimates.

Lead: GRP, GHP; Partners: SCOPE-CM, CEOS, WOAP

Actions:

- Reprocess GEWEX datasets, provide advice on other efforts and lead evaluations.
- Continue evaluation and refinement of sensor algorithms, influencing next generation space-born platforms and reprocessing.
- Development of appropriate calibration/validation/evaluation datasets to confront models.
- Devise robust ways of dealing with the more diverse, complex, higher spatial and temporal resolution, and much greater volumes of data.
- Build on CEOP experience in data management, archival and access.

GRP develops climate data records of water and energy variables, complete with metadata and error bars.

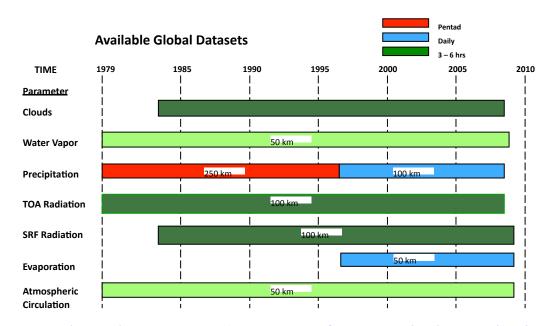
Clouds - ISCCP
Cloud Assessment
Radiation - SRB

Surface reference observations - BSRN

Radiation Assessment

Aerosols - GACP

Aerosol Assessment


Precipitation - GPCP

Sfc gauge obs (GPCC)

Turbulent Fluxes

SeaFlux LandFLux

- Soil Moisture

A GRP product is endorsed by GEWEX/GRP to conform to a high standard of production and documentation. It consists of a blend of available satellite and in-situ observations and is periodically compared and assessed against other products in an open and transparent fashion. It is openly available to everyone without restrictions.

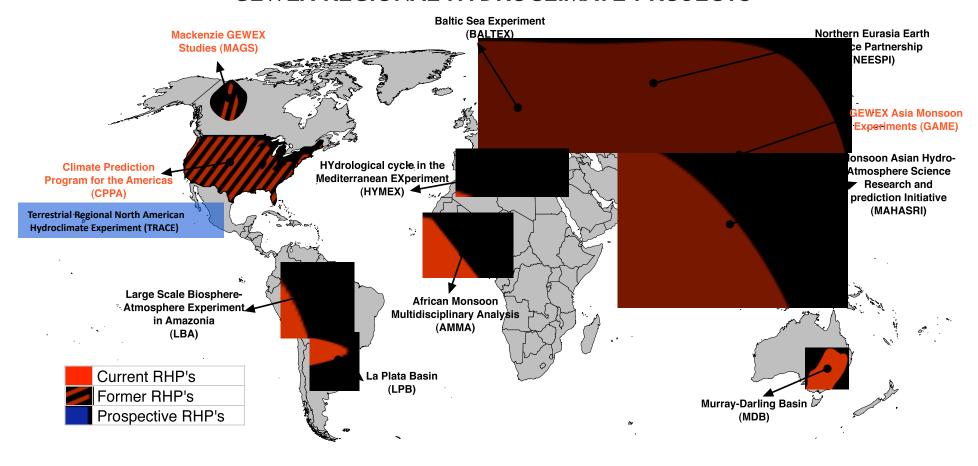
Key Data Objective

When GRP began there were few datasets. Now there is a proliferation: a multitude of datasets that are all different, and with different strengths and weaknesses. The need to assess these, and evaluate and reprocess the data is enormous! So the objective is:

Reprocess all GRP products with common ancillary data and assumptions. Panel has learned much about reprocessing; distribution; documentation and user support. Plan to reprocess periodically (e.g. approx. every 5 years)

Publish state of the "Observed" Water and Energy budgets

Expand accessibility to multi-variable products


Facilitate research to interpret global and regional covariance among Water & Energy variables.

Assess all products of the same variable for strengths and weaknesses. Each agency wants to only reprocess their product.

Help move products to operations; share experience

GEWEX REGIONAL HYDROCLIMATE PROJECTS

Regional water cycles

ISMWG Future Outlook from 2009!

- Proposed New Structure and Embedding within GEWEX
- The embedding of the ISMWG in the GEWEX Radiation Panel (GRP) requires a few changes in the so far loose structure. Proposed is a three tier system which is guided by a board consisting of the (co-)chairs of each of the tiers plus ex-officio members.
 - Tier 1: Validation
 - Tier 2: Assimilation
 - Tier 3: Product Fusion and Merging
- Consistent with other GRP activities

Tier 1: Validation:

- Development of Global In-Situ Soil Moisture network and data sets to support validation of satellite soil moisture retrieval and assimilation
 - Data Hosting, Measurement Protocols
- Validation of Satellite Soil Moisture Products and Soil Moisture Intercomparison Projects
 - Links all three tiers

Tier 2: Assimilation

- The assimilation of soil moisture and satellite data (both active and passive) into numerical weather prediction and hydrological modeling for both forecasting as well as process studies.
 - Important to show usefulness
 - Expand to yield forecasting

Tier 3: Product fusion and merging

- Development of long term consistent global soil moisture products (and their derivatives)
 - Combining various sources of data (PM, AM, In-Situ)
 - Climate/Trend research robust

So far...

- ISMN is established and working well
- Many of the anticipated and envisioned activities are started and/or underway

- Need for continued growth (ISMN) and support
- International collaborative effort needs to be stimulated