

Objectives – Rehearsal 1 (L2 SM A)

Objectives

- Prepare for the postlaunch cal/val
- Find out what needs to be done before the Cal/Val Rehearsal 2 in May-June 2014 and the launch in October 2014

Tasks

- Development of cal/val methodologies and tools
- Identify core validation sites
- Test in situ data processing for executing calibration and validation of SMAP data products:
 - Evaluation is limited due to core site date being current as 2013 but retrievals being simulation of 2001 since there are no current sigma0 data.

Summary of activity

Met	hod	lo]	logy
-----	-----	-----	------

Importance

Rehearsal Performed?

Plan

Core Sites

Primary

8 locations from 4 sites (different year)

Improve the comparison Include mode sites

Sparse Networks

Secondary

Not yet

Perform triple collocation (needs a high resolution model)

Satellite Products

Secondary

Data not available

Data not availability unlikely

Model Products

Secondary

Data not available

Needs model fields

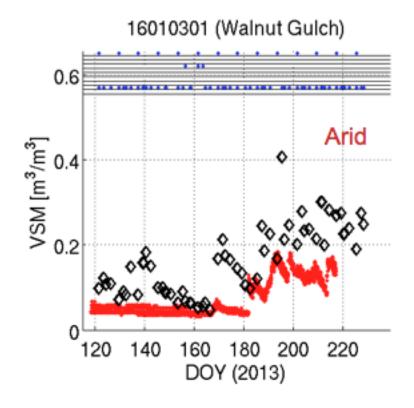
Field Experiments

Primary

Yes but not within the work scope

Continue current activity

Summary of Core Site Validation

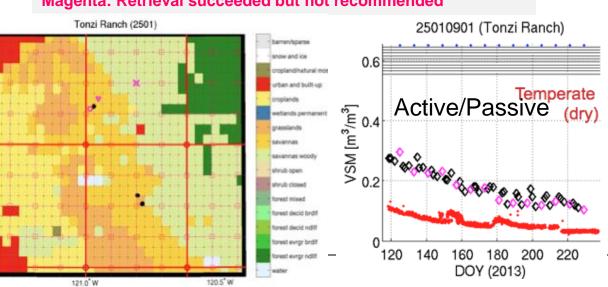

ID	Site Name	Country	Suitable for 3km	Rehearsal Performed
0201	TERENO	Germany	Yes	
0301	REMEDHUS	Spain		
0401	Reynolds Creek	USA, Idaho	Yes	
0501	Kuwait	Kuwait		
0701	Yanco	Australia	Yes	Yes
0702	Kyeamba	Australia	Yes	
0703	Adelong	Australia		
0801	VASKAS	Tunisia	Yes	
0901	Brunkild	Canada		
0902	Casselman	Canada		
1201	Naqu	Tibet		
1202	Maqu	Tibet		
1203	Ngari	Tibet		
1204	Twente	Holland		
1601	Walnut Gulch	USA, Arizona	Yes	Yes
1602	Little Washita	USA, Oklahoma		
1603	Fort Cobb	USA, Oklahoma		
1604	Little River	USA, Georgia		Yes
1605	Walnut Creek	USA, Iowa	Yes	
1606	St. Joseph's	USA, Indiana	Yes	
1607	South Fork	USA, Iowa		
1701	Sodankyla	Finland	Yes	
1901	Bell Ville	Argentina	Yes	
2401	Mpala	Kenya	Yes	
2501	Tonzi Ranch	USA, California	Yes	Yes
2701	Kenaston	Canada	Yes	
3201	Zapotes	Mexico		
4101	Valencia	Spain		

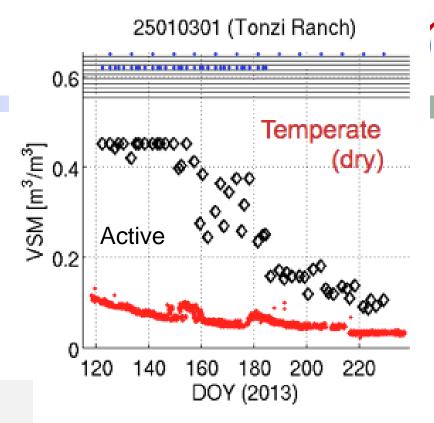
Core Site Validation - I

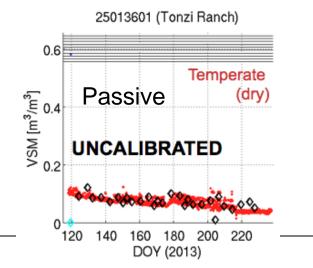
Despite the discrepancy in time, seasonality is well captured.

Black: recommended retrieval

Red: in situ

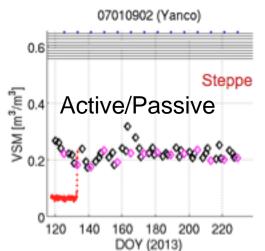

Core Site Validation - II

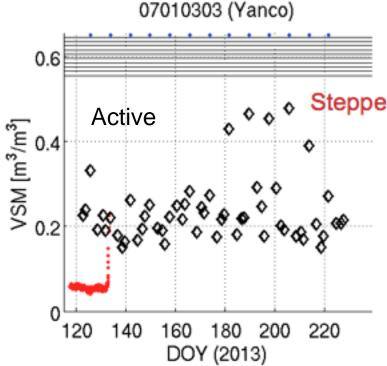

- Active retrieval shows the saturation and too wet retrieval.
 - Active/Passive retrievals are too wet as well (is the discrepancy due to the time gap?)
 - Saturation: forest forward model's sigma0 were raised. Needs to examine simulated retrieval error.
 - Core site is very sparse: representative for Passive?

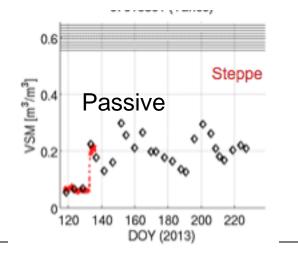

Black: recommended retrieval

Red: in situ

Magenta: Retrieval succeeded but not recommended


Core Site Validation - III


NASA


- Active and Active/Passive are consistent, but not with Passive
 - The time gap may be the reason

Black: recommended retrieval

Red: in situ

Core Site Validation - summary

- Successful retrieval at Walnut Gulch
 - Caution needed given the time-gap
- Some differences at Yanco and Tonzi
 - Consistent between Active and Active/Passive
 - Due to time-gap?
 - Saturation: deliberate bias added to forward model?
- Due to the time-gap, the core-site validation does not provide definite conclusions on the retrieval quality

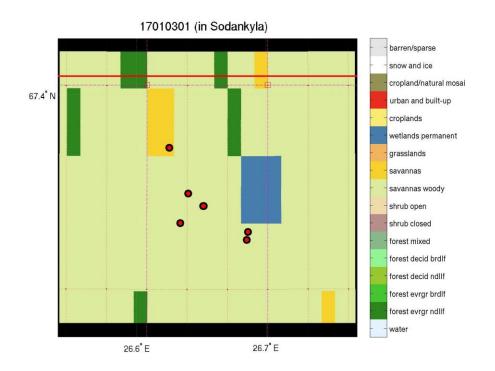
Core Site Validation - additional

Surface roughness

- is more influential than soil moisture
- is estimated by retrieval. An accurate estimate of roughness improves soil moisture estimate.
- In situ information, if available, will be helpful for soil moisture retrieval

Does not change frequently: once a month (agriculture) / a season (natural terrain)

is a sufficient frequency



Core Site Validation - additional

- Landcover classification information
 - Guides the choice of forward model
 - Helps choose if a core site is appropriate
 - Is 500m-resolution IGBP
 - Will be better if a local higher resolution information is available

Plan – Rehearsal 2 & Postlaunch

- Core validation sites
 - Identify feasible sites
- Sparse network
 - Identify feasible sites
 - Understand scaling function
 - Exercise triple collocation (needs 3 km model product)
- Satellite data
 - Evaluate datacube if satellite data become available
- Numerical model
 - Find usable models

Plan – Rehearsal 2 & Postlaunch

- Goal: Understand retrieval error
 - Consistency with L2_SM_P and L2_SM_AP
 - Heterogeneity
 - Prepare feasible solutions to improve the validation results
- Tools
 - Glosim2
 - Field campaign data
 - Globally as well as Core Validation Sites

Backup slides

	Level 2/3 Product				
Issues	SM P	SM A	SM A/P	FT	
Algorithm questions					
Algorithm selection	0	•	•	0	
Time series performance		•	•	•	
Heterogeneity	•	•	•	•	
Azimuthal dependency		•	0	0	
Resolution scaling	•	•	•	0	
Topography effects	•	•	•	•	
Separability soil and vegetation				•	
Vegetation types	•	•	•	0	
RFI mitigation	•	•	•	0	
Ancillary data					
Soil temperature	•	0	•		
Vegetation temperature	0	0	0		
Soil texture	0	0	0	0	
Roughness	0	•	0	0	
VWC	•	•	•	0	
Dense vegetation mask	•	•	•	•	
Mountain mask	•	•	•	•	
Land cover mask	•	•	•	•	
Urban area mask	•	•	•	•	
Water body mask	0	0	0	0	
Freeze/snow mask	0	0	0		
New input required					
o - New input useful but not	required				
Vacant - Not an issue					