National Aeronautics and Space Administration

Soil Moisture Active Passive Mission SMAP

Cal/Val Workshop #4 November 5-7, 2013

L4_SM

Rolf Reichle (NASA/GSFC) Gabrielle De Lannoy (NASA/GSFC) Qing Liu (NASA/GSFC) Wade Crow (USDA/ARS) Randy Koster (NASA/GSFC) John Kimball (U. Montana)

1) Motivation and requirements

- 2) Calibration and validation approach and activities
- 3) Validation of prototype L4_SM products
 - Rehearsal Phase 1 model-only prototype product
 - Prototype product based on SMOS assimilation

Key limitations of SMAP observations

SMAP Level 4 soil moisture product

L4_SM Product:

Assimilating SMAP data into a land model driven with observation-based forcings yields:

– a root-zone moisture product (reflecting SMAP data), and

a complete and consistent
 estimate of soil moisture & related
 fields.

L4_SM output includes

- global,
- 3-hourly,
- 9 km

estimates of surface (0-5 cm) and root zone (0-100 cm) soil moisture.

L4_SM data product requirements

Motivated by the SMAP Level 1 Science Requirements, the

L4_SM surface (0-5 cm) and root zone (0-100 cm) soil moisture estimates will be validated to an ubRMSE requirement of 0.04 m³m⁻³.

[Identical to L2 soil moisture product validation and excluding regions of snow and ice, frozen ground, mountainous topography, open water, urban areas, and vegetation with water content greater than 5 kg m⁻².] [ubRMSE = RMSE after removal of long-term mean bias.]

Research outputs (surface meteorological forcing fields, land surface fluxes, soil temperature and snow states, runoff, and ensemble-based error estimates) will be **evaluated on a best effort basis**.

- 1) Motivation and requirements
- 2) Calibration and validation approach and activities
- 3) Validation of prototype L4_SM products
 - Rehearsal Phase 1 model-only prototype product
 - Prototype product based on SMOS assimilation

L4_SM validation approach

L4_SM pre-launch Cal/Val activities

Cal/Val activities to date:

- Calibrating modeling and assimilation system:
 - Soil parameters.
 - Microwave radiative transfer (tau-omega) model parameters.
 - Model and observation error parameters.
- Participated in Cal/Val Rehearsal Phase 1.
- Validating L4_SM system driven with **SMOS** Tb obs.

Outline

- 1) Motivation and requirements
- 2) Calibration and validation approach and activities
- 3) Validation of prototype L4_SM products
 - Rehearsal Phase 1 model-only prototype product
 - Prototype product based on SMOS assimilation

Validation at core-site reference pixels (surface)

	Additional metrics are also reported.						
Site	RefPix	ubRMSF	Bias	RMSF	R	Site name	
1601	0901	0.029	0.056	0.065	0.652	Walnut Gulch	
1604	0901	0.046	0.023	0.041	0.456	Little River	
1604	0902	0.037	-0.004	0.044	0.395	Little River	
2501	0901	0.020	0.074	0.073	0.747	Tonzi Ranch	
1607	0901	0.086	0.072	0.101	0.627	South Fork	
4101	0902	0.036	0.098	0.096	0.659	Valencia	
		0.044	0.053	0.070	0.589	AVERAGE	

(L4_SM is model-only prototype, no data assimilation)

Validation at core-site reference pixels (root zone)

- 1) Motivation and requirements
- 2) Calibration and validation approach and activities
- 3) Validation of prototype L4_SM products
 - Rehearsal Phase 1 model-only prototype product

Prototype product based on SMOS assimilation

Prototype product based on SMOS (L4_SM_SMOS)

- Assimilate SMOS Tb (7 angles, 36 km, 6 am/pm, H- and V-pol)
- MERRA surface meteorology
- CPCU daily 0.5 deg precipitation corrections
- 9 km EASEv2 Catchment model resolution
- Calibrated microwave RTM parameters
- Mean-adjustment of SMOS observations prior to assimilation

L4_SM_SMOS: Cal/Val (core) sites

L4_SM_SMOS: Cal/Val (core) sites

• ubRMSE reduced to less than 0.04 m³/m³.

• (Anomaly) correlation significantly increased (except RC).

• Bias reduced.

L4_SM_SMOS: Sparse networks

L4_SM_SMOS: Sparse networks

Root zone soil moisture

Thank you for your attention!

EXTRA SLIDES

Cal/Val extras

Diagnostics of filter performance

Innovations diagnostics are ALWAYS available within assimilation system.

- Mean of innovations should equal zero. Otherwise have bias!
- Normalize innovations with sqrt(P+R) → std-dev should equal one.
 Otherwise (input) model and obs error parameters are inconsistent!

L4_SM_SMOS: Normalized Tb innovations

L4_SM_SMOS: Innovations and increments

Innovations (36 km observation space)

Increments (9 km model space)

Apr 2010 - Mar 2013

L4_SM_SMOS: Ensemble error estimates

Tb ensemble std-dev (36 km obs. space)

Apr 2010 – Mar 2013

Increments (9 km model space)

Tb forecast errors and soil moisture increments are small over densely vegetated regions.

(Soil moisture ensemble spread was not written out and remains to be evaluated.)

Impact of CPCU on soil moisture skill: CalVal sites

M Impact of CPCU on soil moisture skill improvement: SCAN/Snotel

Greater improvements in terms of anomaly R without CPCU corrections.

L4_SM post-launch Cal/Val activities

Post-launch, emphasis is on *validation* of the L4_SM data product.

Post-launch validation:

- See earlier slides on validation requirements, data resources, and approach.
- Can ingest IOC and Cal/Val phase L1 and L2 brightness temperature observations, but poor quality data likely eliminated during L4_SM internal QC.

Refine algorithm calibration as needed (SMOS \rightarrow SMAP):

- Re-calibrate microwave radiative transfer model parameters to SMAP Tb.
- Re-derive scaling parameters for **SMAP-based** system.
- Adjust model and observation error standard deviations in response to SMAPbased observation-minus-forecast residuals.
- Re-calibrate F/T analysis using **SMAP F/T** observations.

Operational monitoring:

- QC/QA (e.g., checks against range thresholds)
- Assimilation diagnostics

L4_SM Cal/Val Schedule

- SMOS-based L4_SM calibration (on-going).
- Science algorithm software **Delivery 5** (Feb 2014).
- SMAP Cal/Val Rehearsal Phase 2 (May 2014).
- SMAP launch (Oct 2014) and IOC (Winter 2014/15); initiation of SMAP operations and L4_SM production.
- Post-launch Cal/Val activities (Feb 2015-Jan 2016).
- L4_SM Beta Product release to NSIDC (6 months after IOC; Aug 2015).
- L4_SM Stage I Validated Product release to NSIDC (12 months after IOC; Feb 2016).
- Release of post-launch Cal/Val report (Feb 2016).

Algorithm development extras

NASA GEOS-5 Catchment land surface model

#30

L4_SM data product overview

L4_SM data product overview (2)

- L4_SM provides a global product → no exclusion masks (besides QC of assimilated observations).
- L4_SM provides quantitative information about snow, soil temperature, etc → binary flags not needed in most cases.
- "aup" Collection includes error estimates (ensemble spread) and assimilation diagnostics (observations-minus-forecast residuals, increments)

L4_SM baseline algorithm

Baseline algorithm:

- Customized version of NASA GEOS-5 Land Data Assimilation System
 - 3d ensemble Kalman filter: spatial extrapolation, interpolation, and disaggregation of assimilated observations
 - Catchment land surface model with tau-omega microwave radiative transfer model
 - Observations-based precipitation
- No optional algorithms.

L4_SM analysis overview

L4_SM soil moisture analysis

L4_SM soil moisture analysis (2)

N9: # of 9 km grid cells incl. in soil moisture analysis. j=1...N9

Subscripts for time and ensemble member omitted.

Precipitation corrections

NOAA/CPC Unified Daily Gauge Data

- Provided on 0.5 deg grid with ~2-day latency
- Dense gauge networks from special CPC collections in US, Mexico, and S. America
- GTS gauge network elsewhere
- Daily reports available from ~17,000 stations

Satellite remote sensing of (surface) soil moisture

2009-presentL-band passive40 km resolutionInterferometric & multi-angular

Launch: 2014 L-band active/passive 3-40 km resolution

🧭 Zero-order (tau-ω) microwave radiative transfer model

L-band brightness temp.: SMOS vs. GEOS-5

One-year global average Tb (Jul 2010 – Jun 2011)

For some RTM parameter sets, GEOS-5 (model) Tb is strongly biased vs. SMOS observations.

De Lannoy et al, 2013, doi: 10.1175/JHM-D-12-092.1

Prescribed RTM parameters: Lit1: SMAP Level2 ATBD Lit2: LMEB literature Lit3: ECMWF SMOS monitor

L-band brightness temp.: SMOS vs. GEOS-5

Literature values for parameters yield strongly biased Tb.

Calibrated parameters yield mostly unbiased long-term mean Tb.

L-band brightness temp.: SMOS vs. GEOS-5

Scaling statistics

Some bias remains between observations and simulations.

(e.g., due to errors in seasonal cycle of vegetation inputs, seasonal and diurnal errors in coll temperature inputs, important observations, and/or important collibration)

- in soil temperature inputs, imperfect observations, and/or imperfect calibration).
- Adjust Tb observations such that their (3-year) mean value for each grid cell matches that of the simulated Tb.

(separately for each day-of-year, after smoothing)

Walnut Gulch

Example of residual biases after calibration of microwave RTM parameters (6 am, 40° inc angle, H-pol, June 2010 – May 2013)

L-band brightness temp.: SMOS (scaled) vs. GEOS-5

Observation and model error parameters

Input parameter settings evolved from soil moisture retrieval assimilation.

Algorithm calibration primarily adjusts these parameters, based on validation metrics (see below). Observation error parameters (SMOS Tb) Standard deviation: 8 K (additive, uncorrelated in space and time)

Horizontal scale of distributed (3d) analysis: 1.25 deg (radius)

Model forcing error parameters

	• •						
Perturbation	Additive (A) or	Standard deviation	AR(1) time series correlation scale	Spatial correlation scale	Cross-correlation with perturbations in		
					Р	SW	LW
Precipitation (P)	М	0.5	1 day	0.5 deg	1.0	-0.8	0.5
Downward shortwave radiation (SW)	Μ	0.3	1 day	0.5 deg	-0.8	1.0	-0.5
Downward longwave radiation (LW)	A	20 W m ⁻²	1 day	0.5 deg	0.5	-0.5	1.0

Model **prognostics** error parameters

(Prognostics perturbations account for errors in model structure and model parameters.)

Perturbation	Additive (A) or Multiplicative	Standard deviation	AR(1) time series correlation scale	Spatial correlation	Cross-correlation with perturbations in			
	(M)?			scale	Catdef	Srfexc	Tsurf	Ght1
Catchment deficit (Catdef)	A	0.07 mm	3 h	0.5 deg	1.0	0.0	0.5	0.3
Surface excess (Srfexc)	A	0.04 mm	3 h	0.5 deg	0.0	1.0	-0.3	-0.2
Surface temperature (Tsurf)	A	0.2 K	3 h	0.5 deg	0.5	-0.3	1.0	0.6
Top-layer soil heat content (Ght1)	A	500 J/m ⁻²	3 h	0.5 deg	0.3	-0.2	0.6	1.0

Freeze-thaw OSSE

OL = Open loop (no assimilation)DA = Assimilation of synthetic F/T obs. $\Delta RMSE = RMSE(OL) - RMSE(FT)$

	OL	ΔRMSE* [K]						
obs.	RMSE*	Max. classification error [%]						
)	[K]	0	5	10	20	30		
Tskin	3.08	0.21	0.19	0.18	0.15	0.12		
Tsoil	1.97	0.06	0.05	0.04	0.01	-0.03		

*Excl. times & locations with Tair>7°C or Tair<-7°C

Minimal improvements with realistic classification errors.

Farhadi et al., 2013, in prep.

