Soil Moisture
Active Passive
Mission
SMAP
Cal/Val Workshop #4
November 5-7, 2013

L4_SM
Rolf Reichle (NASA/GSFC)
Gabrielle De Lannoy (NASA/GSFC)
Qing Liu (NASA/GSFC)
Wade Crow (USDA/ARS)
Randy Koster (NASA/GSFC)
John Kimball (U. Montana)
Outline

1) Motivation and requirements
2) Calibration and validation approach and activities
3) Validation of prototype L4_SM products
 - Rehearsal Phase 1 – model-only prototype product
 - Prototype product based on SMOS assimilation
Key limitations of SMAP observations

SMAP observations:

1) are sensitive to moisture and temperature only in a 5 cm surface layer (and only if less than 5 kg/m² vegetation),
2) have limited coverage in time and space, and
3) are subject to measurement errors.

Need root-zone soil moisture for many applications of interest to SMAP.
SMAP Level 4 soil moisture product

L4_SM Product:
Assimilating SMAP data into a land model driven with observation-based forcings yields:
– a root-zone moisture product (reflecting SMAP data), and
– a complete and consistent estimate of soil moisture & related fields.

L4_SM output includes
• global,
• 3-hourly,
• 9 km
estimates of surface (0-5 cm) and root zone (0-100 cm) soil moisture.

Surface meteorology

SMAP observations

Data Assimilation

Land model

L4_SM Product: Surface and root-zone soil moisture

Applications Users
Motivated by the SMAP Level 1 Science Requirements, the

L4_SM surface (0-5 cm) and root zone (0-100 cm) soil moisture estimates will be validated to an [ubRMSE requirement of 0.04 m³m⁻³.](ubRMSE = RMSE after removal of long-term mean bias.)

[Identical to L2 soil moisture product validation and excluding regions of snow and ice, frozen ground, mountainous topography, open water, urban areas, and vegetation with water content greater than 5 kg m⁻².]

Research outputs (surface meteorological forcing fields, land surface fluxes, soil temperature and snow states, runoff, and ensemble-based error estimates) will be evaluated on a best effort basis.
1) Motivation and requirements
2) Calibration and validation approach and activities
3) Validation of prototype L4_SM products
 - Rehearsal Phase 1 – model-only prototype product
 - Prototype product based on SMOS assimilation
<table>
<thead>
<tr>
<th>Methodology</th>
<th>Data</th>
<th>Importance</th>
<th>Metric</th>
</tr>
</thead>
<tbody>
<tr>
<td>Core Sites</td>
<td>Observed grid cell average values</td>
<td>Primary</td>
<td>RMSE, bias, correlation</td>
</tr>
<tr>
<td></td>
<td>(time-continuous)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sparse Networks</td>
<td>Observed values</td>
<td>Primary</td>
<td>Correlation, RMSE, bias</td>
</tr>
<tr>
<td></td>
<td>(time-continuous)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Satellite Products</td>
<td>Orbit-based match-ups (SMOS, ASCAT, ...)</td>
<td>Secondary:</td>
<td>Correlation, RMSE, bias</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Pending cont’d operation</td>
<td></td>
</tr>
<tr>
<td>Model Products</td>
<td>Global modeling and assimilation systems</td>
<td>Primary</td>
<td>RMSE, bias, correlation, assim. diagn.</td>
</tr>
<tr>
<td></td>
<td>(ECMWF, NCEP, ...)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Field Experiments</td>
<td>Detailed estimates for a very limited set</td>
<td>Secondary</td>
<td>RMSE, bias, correlation</td>
</tr>
<tr>
<td></td>
<td>of conditions</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Will be used to verify “0.04 m3m$^{-3}$” requirement
Cal/Val activities to date:

• Calibrating modeling and assimilation system:
 – Soil parameters.
 – Microwave radiative transfer (tau-omega) model parameters.
 – Model and observation error parameters.
• Participated in Cal/Val Rehearsal Phase 1.
• Validating L4_SM system driven with SMOS Tb obs.
1) Motivation and requirements
2) Calibration and validation approach and activities
3) Validation of prototype L4_SM products
 - Rehearsal Phase 1 – model-only prototype product
 - Prototype product based on SMOS assimilation
Validation at core-site reference pixels (surface)

Average: $\text{ubRMSE}=0.041 \text{ m}^3/\text{m}^3$

- 16010901 (Walnut Gulch): $\text{ubRMSE}=0.029 \text{ m}^3/\text{m}^3$
- 16040901 (Little River): $\text{ubRMSE}=0.046 \text{ m}^3/\text{m}^3$
- 16040902 (Little River): $\text{ubRMSE}=0.037 \text{ m}^3/\text{m}^3$
- 25010901 (Tonzi Ranch): $\text{ubRMSE}=0.020 \text{ m}^3/\text{m}^3$
- 41010902 (Valencia): $\text{ubRMSE}=0.036 \text{ m}^3/\text{m}^3$
- 16070901 (South Fork): $\text{ubRMSE}=0.076 \text{ m}^3/\text{m}^3$

Red: Core-site in situ measurements
Black: L4_SM (model-only prototype, no data assimilation)

Special thanks to A. Colliander & M. Cosh!
Validation at core-site reference pixels (surface)

Additional metrics are also reported.

<table>
<thead>
<tr>
<th>Site</th>
<th>RefPix</th>
<th>ubRMSE</th>
<th>Bias</th>
<th>RMSE</th>
<th>R</th>
<th>Site name</th>
</tr>
</thead>
<tbody>
<tr>
<td>1601</td>
<td>0901</td>
<td>0.029</td>
<td>0.056</td>
<td>0.065</td>
<td>0.652</td>
<td>Walnut Gulch</td>
</tr>
<tr>
<td>1604</td>
<td>0901</td>
<td>0.046</td>
<td>0.023</td>
<td>0.041</td>
<td>0.456</td>
<td>Little River</td>
</tr>
<tr>
<td>1604</td>
<td>0902</td>
<td>0.037</td>
<td>-0.004</td>
<td>0.044</td>
<td>0.395</td>
<td>Little River</td>
</tr>
<tr>
<td>2501</td>
<td>0901</td>
<td>0.020</td>
<td>0.074</td>
<td>0.073</td>
<td>0.747</td>
<td>Tonzi Ranch</td>
</tr>
<tr>
<td>1607</td>
<td>0901</td>
<td>0.086</td>
<td>0.072</td>
<td>0.101</td>
<td>0.627</td>
<td>South Fork</td>
</tr>
<tr>
<td>4101</td>
<td>0902</td>
<td>0.036</td>
<td>0.098</td>
<td>0.096</td>
<td>0.659</td>
<td>Valencia</td>
</tr>
</tbody>
</table>

Average

0.044 0.053 0.070 0.589 **Average**

(L4_SM is model-only prototype, no data assimilation)
Validation at core-site reference pixels (root zone)

Red: Core-site in situ measurements [avg. of 5, 10, 20, and 50cm obs]
Black: L4_SM (model-only prototype)

Special thanks to A. Colliander & M. Cosh!
Outline

1) Motivation and requirements
2) Calibration and validation approach and activities
3) Validation of prototype L4_SM products
 - Rehearsal Phase 1 – model-only prototype product
 - Prototype product based on SMOS assimilation
• **Assimilate SMOS Tb** (7 angles, 36 km, 6 am/pm, H- and V-pol)
• MERRA surface meteorology
• CPCU daily 0.5 deg precipitation corrections
• 9 km EASEv2 Catchment model resolution
• Calibrated microwave RTM parameters
• Mean-adjustment of SMOS observations prior to assimilation
L4_SM_SMOS: Cal/Val (core) sites

Little Washita

Surface

Root zone

Green: In situ
Red: L4_SM_SMOS
Black: Model only
L4_SM_SMOS: Cal/Val (core) sites

- **ubRMSE** reduced to less than 0.04 m³/m³.
- **(Anomaly) correlation** significantly increased (except RC).
- **Bias** reduced.

Bias [m³/m³]

- Black: Model only
- Gray: L4_SM_SMOS

ubRMSE [m³/m³]

Anom R [-]

Apr 2010 – Mar 2011
L4_SM_SMOS: Sparse networks

<table>
<thead>
<tr>
<th>SCAN/SNOTEL</th>
<th>USCRN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Surface soil moisture</td>
<td>Surface soil moisture</td>
</tr>
<tr>
<td>ubRMSE=0.056 m³/m³</td>
<td>ubRMSE=0.052 m³/m³</td>
</tr>
<tr>
<td>N=183</td>
<td>N=77</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Root zone soil moisture</th>
<th>Root zone soil moisture</th>
</tr>
</thead>
<tbody>
<tr>
<td>ubRMSE=0.046 m³/m³</td>
<td>ubRMSE=0.041 m³/m³</td>
</tr>
<tr>
<td>N=183</td>
<td>N=77</td>
</tr>
</tbody>
</table>
Root zone soil moisture

ubRMSE=0.04 m³/m³
N=38

COSMOS

L4_SM_SMOS: Sparse networks
Thank you for your attention!
EXTRA SLIDES
Cal/Val extras
Diagnostics of filter performance

Filter update: \(x^+ = x^- + K(y - x^-) \)
\[K = P \frac{1}{P + R} = \text{Kalman gain} \]

Diagnostic: \(\mathbb{E}[(y - x^-)(y - x^-)^T] = P + R \)

\(x^- = \text{model forecast} \)
\(x^+ = \text{“analysis”} \)
\(y = \text{observation} \)

Innovations \(\equiv \text{obs} - \text{model prediction} \)
(internal diagnostic)

State err cov + obs err cov
(controlled by inputs)

Innovations diagnostics are ALWAYS available within assimilation system.

- Mean of innovations should equal zero. **Otherwise have bias!**
- Normalize innovations with \(\sqrt{P+R} \) \(\rightarrow \) std-dev should equal one.
 Otherwise (input) model and obs error parameters are inconsistent!

Example:
1) Bias.
2) Input uncertainties too small.
Normalized innovations histograms suggest some over-estimation of the input error variances (of model and/or observations).
L4_SM_SMOS: Innovations and increments

Innovations (36 km observation space)
- Mean of innovations
 - $\text{avg} = 0.4$ K, $\text{avg abs} = 0.7$ K
- Stdv of normalized innovations
 - $\text{avg} = 0.82$

Innovations (9 km model space)
- Stdv of surface excess incr.
 - $\text{avg} = 0.6$ mm
- Stdv of root zone excess incr.
 - $\text{avg} = 2.7$ mm
- Number of increments per day
 - (avg: ~1 every other day)

Apr 2010 – Mar 2013
L4_SM_SMOS: Ensemble error estimates

Tb ensemble std-dev (36 km obs. space)

- **Mean forecast** error std-dev
 - avg = 1.5 K

- **Mean analysis** error std-dev
 - avg = 0.83 K

- **Mean analysis/forecast** error std-dev (avg = 0.67)

Increments (9 km model space)

- Stdv of **surface** excess incr.
 - avg = 0.6 mm

- Stdv of **root zone** excess incr.
 - avg = 2.7 mm

Tb forecast errors and soil moisture increments are small over densely vegetated regions.

(Soil moisture ensemble spread was not written out and remains to be evaluated.)
Impact of CPCU on soil moisture skill: CalVal sites

Withholding CPCU precipitation corrections simulates conditions in poorly observed regions. Improvements from Tb assimilations are somewhat greater without CPCU corrections. ubRMSE still close to 0.04 m³/m³.
Impact of CPCU on soil moisture skill improvement: SCAN/Snotel

With CPCU precipitation

ΔanomR = anomR(assim) − anomR(model)

Surface soil moisture

ΔanomR = 0.08
N=161

ΔanomR = 0.10
N=161

Root-Zone soil moisture

ΔanomR = 0.19
N=161

Without CPCU precipitation

ΔanomR = 0.16
N=161

ΔanomR = 0.19
N=161

36 km model

Greater improvements in terms of anomaly R without CPCU corrections.
Post-launch, emphasis is on validation of the L4_SM data product.

Post-launch validation:
- See earlier slides on validation requirements, data resources, and approach.
- Can ingest IOC and Cal/Val phase L1 and L2 brightness temperature observations, but poor quality data likely eliminated during L4_SM internal QC.

Refine algorithm calibration as needed (SMOS → SMAP):
- Re-calibrate microwave radiative transfer model parameters to SMAP Tb.
- Re-derive scaling parameters for SMAP-based system.
- Adjust model and observation error standard deviations in response to SMAP-based observation-minus-forecast residuals.
- Re-calibrate F/T analysis using SMAP F/T observations.

Operational monitoring:
- QC/QA (e.g., checks against range thresholds)
- Assimilation diagnostics
L4_SM Cal/Val Schedule

- SMOS-based **L4_SM calibration** (on-going).
- Science algorithm software **Delivery 5** (Feb 2014).
- SMAP **Cal/Val Rehearsal Phase 2** (May 2014).
- SMAP **launch** (Oct 2014) and IOC (Winter 2014/15); initiation of SMAP operations and L4_SM production.
- **Post-launch Cal/Val activities** (Feb 2015-Jan 2016).
- L4_SM **Beta Product release** to NSIDC (6 months after IOC; Aug 2015).
- L4_SM **Stage I Validated Product release** to NSIDC (12 months after IOC; Feb 2016).
- Release of post-launch **Cal/Val report** (Feb 2016).
Algorithm development extras
Consider an arbitrary point in the catchment:

- **Integrate:** yellow area = moisture deficit, D, at this point.
- equilibrium profile
- water table

Now integrate D across the catchment:

\[
\text{CATDEF} = \frac{1}{A} \int_A D \, dA
\]

= the average amount of water, per m2, that must be added to the catchment to bring it to complete saturation, assuming equilibrium profiles.

“Catchment Deficit” variable

“Root Zone Excess” and “Surface Excess” variables: the view at a point

- SRFEXC: amount by which surface moisture exceeds equil. in root zone
- RZEXC: amount by which root zone moisture exceeds equil.

Diffusion calculation

Functions relating time scales of diffusion to the moisture variables are pre-computed from Richard’s equation calculations at high vertical resolution. The time scales for diffusion between RZEXC and CATDEF reflect net diffusion over a spatially distributed set (across the catchment) of independent columns.

Koster et al. (2000) Ducharne et al. (2000)
L4_SM data product overview

SMAP inputs

- **Brightness temperature**
 - (L1C_TB, 36 km)
 - (L2_SM_AP, 9 km)

- **Freeze-thaw state**
 - (L2_SM_A, 3 km)

Ancillary data inputs

- Land model parameters
- Surface meteorology (incl. observation-corrected precip)
- Land assimilation parameters

L4_SM product

- 9 km, 3-hourly global output with 7-day latency

- **Surface soil moisture** (≡ top 5 cm)
- **Root zone soil moisture** (≡ top 1 m)

Research output

- surface and soil temperatures *(input to L4_C)*
- sensible, latent, and ground heat flux
- runoff, baseflow, snowmelt
- surface meteorological forcings (air temperature, precipitation, …) *[ancillary]*
- **error estimates** (generated by assimilation system)
- assimilation diagnostics (observations-minus-forecast residuals, increments)
L4_SM data product overview (2)

- L4_SM provides a global product → **no exclusion masks** (besides QC of assimilated observations).
- L4_SM provides quantitative information about snow, soil temperature, etc → **binary flags not needed** in most cases.
- “aup” Collection includes error estimates (ensemble spread) and assimilation diagnostics (observations-minus-forecast residuals, increments)
Baseline algorithm:
- Customized version of NASA GEOS-5 Land Data Assimilation System
 - 3d ensemble Kalman filter: *spatial extrapolation, interpolation, and disaggregation of assimilated observations*
 - Catchment land surface model with tau-omega microwave radiative transfer model
 - Observations-based precipitation
- No optional algorithms.
L4_SM analysis overview

L4_SM LAND MODEL
- FCST(t) 9 km → Model integration (forecast) → F/T FCST 9 km

SMAP OBSERVATIONS
- F/T OBS 3 km → Aggregate → 9 km

Agree?
- no → Freeze-thaw analysis: Update soil heat content
- yes → Frozen? (no) → Soil moisture analysis: Update soil moisture and soil heat content
- yes → No analysis

ANA(t-1) 9 km

ANA(t) 9 km
L4_SM soil moisture analysis

L4_SM LAND MODEL

- FCST(t) 9 km
 - TBH, TBV 9 km
 - Aggregate
 - 36 km
 - Clim. mean adjustment
 - 36 km

SMAP OBSERVATIONS

- 3d EnKF analysis
 - Innovations (OBS – FCST) 9 km, 36 km
 - Available?
 - no
 - TBH, TBV (L2_SM_AP) 9 km
 - Clim. mean adjustment
 - 9 km
 - Diff.
 - 9 km
 - yes
 - TBH, TBV (L1C_TB) 36 km
 - Clim. mean adjustment
 - 36 km

L4_SM soil moisture analysis (2)

Analyzed model states:

\[
\begin{pmatrix}
 x_1^- \\
 x_2^- \\
 \vdots \\
 x_{N9}^-
\end{pmatrix}
\]

where

\[
\begin{pmatrix}
 SRFEXC_FCST_j \\
 RZEXC_FCST_j \\
 CATDEF_FCST_j \\
 TC1_FCST_j \\
 TC2_FCST_j \\
 TC4_FCST_j \\
 GHT1_FCST_j
\end{pmatrix}
\]

Soil moisture prognostic variables.

Surface temperature and top-layer soil temperature prognostic variables.

N9: # of 9 km grid cells incl. in soil moisture analysis.

j=1...N9

Subscripts for time and ensemble member omitted.
NOAA/CPC Unified Daily Gauge Data

- Provided on 0.5 deg grid with ~2-day latency
- Dense gauge networks from special CPC collections in US, Mexico, and S. America
- GTS gauge network elsewhere
- Daily reports available from ~17,000 stations
Precipitation corrections

GEOS-5 (NWP)
Hourly
0.25° x 0.3125°

Rescale GEOS-5
separately for each day and
0.25° x 0.3125° grid cell

CPCU Gauges
Daily
0.5° x 0.5°

GEOS-5 + CPCU
(hourly, 0.25° x 0.3125°)

For each day and each 0.25° x 0.3125° grid cell, the corrected GEOS-5 precipitation (almost) matches CPCU observations.
Satellite remote sensing of (surface) soil moisture

2009-present
L-band passive
40 km resolution
Interferometric & multi-angular

Launch: 2014
L-band active/passive
3-40 km resolution
Zero-order (tau-ω) microwave radiative transfer model

Key microwave parameters:

- Vegetation opacity (τ)
- Scattering albedo (ω)
- Soil roughness (h)

$T_{b,TOA}$
$T_{b,TOV}$

atmospheric contributions

attenuation by vegetation

θ
For some RTM parameter sets, GEOS-5 (model) Tb is strongly biased vs. SMOS observations.

Prescribed RTM parameters:
Lit1: SMAP Level2 ATBD
Lit2: LMEB literature
Lit3: ECMWF SMOS monitor

De Lannoy et al, 2013, doi: 10.1175/JHM-D-12-092.1
L-band brightness temp.: SMOS vs. GEOS-5

One-year mean [K]

SMOS

H-pol 42.5° Jul 2010 – Jun 2011 (validation period)

Calibrated parameters yield mostly unbiased long-term mean Tb.

Literature values for parameters yield strongly biased Tb.

- **Lit1**
 - avg(|L|) = 42.0 K

- **Lit2**
 - avg(|L|) = 12.7 K

- **Lit3**
 - avg(|L|) = 24.6 K

- **CalD2**
 - avg(|L|) = 2.7 K
L-band brightness temp.: SMOS vs. GEOS-5

- H-pol 6 am vs. V-pol 6 am
- H-pol 6 pm vs. V-pol 6 pm
- Time (Jan 2010 – Oct 2012)
- Small bias: 6 am vs. 6 pm

#43
Some bias remains between observations and simulations. (e.g., due to errors in seasonal cycle of vegetation inputs, seasonal and diurnal errors in soil temperature inputs, imperfect observations, and/or imperfect calibration).

Adjust Tb observations such that their (3-year) mean value for each grid cell matches that of the simulated Tb. (separately for each day-of-year, after smoothing)

Example of residual biases after calibration of microwave RTM parameters (6 am, 40° inc angle, H-pol, June 2010 – May 2013)
L-band brightness temp.: SMOS (scaled) vs. GEOS-5

[a) H-pol 6 am V-pol 6 am
 Time (Jan 2010 – Nov 2012)

[b) H-pol 6 pm V-pol 6 pm
 Time (Jan 2010 – Nov 2012)
Observation and model error parameters

Input parameter settings evolved from soil moisture retrieval assimilation. **Algorithm calibration** primarily adjusts these parameters, based on validation metrics (see below).

Horizontal scale of distributed (3d) analysis: 1.25 deg (radius)

Model forcing error parameters

<table>
<thead>
<tr>
<th>Perturbation</th>
<th>Additive (A) or Multiplicative (M)?</th>
<th>Standard deviation</th>
<th>AR(1) time series correlation scale</th>
<th>Spatial correlation scale</th>
<th>Cross-correlation with perturbations in</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>P</td>
</tr>
<tr>
<td>Precipitation (P)</td>
<td>M</td>
<td>0.5</td>
<td>1 day</td>
<td>0.5 deg</td>
<td>1.0</td>
</tr>
<tr>
<td>Downward shortwave radiation (SW)</td>
<td>M</td>
<td>0.3</td>
<td>1 day</td>
<td>0.5 deg</td>
<td>-0.8</td>
</tr>
<tr>
<td>Downward longwave radiation (LW)</td>
<td>A</td>
<td>20 W m(^{-2})</td>
<td>1 day</td>
<td>0.5 deg</td>
<td>0.5</td>
</tr>
</tbody>
</table>

Observation error parameters (SMOS Tb)

- Standard deviation: 8 K
- (additive, uncorrelated in space and time)
Observation and model error parameters

(Prognostics perturbations account for errors in model structure and model parameters.)

<table>
<thead>
<tr>
<th>Perturbation</th>
<th>Additive (A) or Multiplicative (M)?</th>
<th>Standard deviation</th>
<th>AR(1) time series correlation scale</th>
<th>Spatial correlation scale</th>
<th>Cross-correlation with perturbations in</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Catdef</td>
</tr>
<tr>
<td>Catchment deficit (Catdef)</td>
<td>A</td>
<td>0.07 mm</td>
<td>3 h</td>
<td>0.5 deg</td>
<td>1.0</td>
</tr>
<tr>
<td>Surface excess (Srfexc)</td>
<td>A</td>
<td>0.04 mm</td>
<td>3 h</td>
<td>0.5 deg</td>
<td>0.0</td>
</tr>
<tr>
<td>Surface temperature (Tsurf)</td>
<td>A</td>
<td>0.2 K</td>
<td>3 h</td>
<td>0.5 deg</td>
<td>0.5</td>
</tr>
<tr>
<td>Top-layer soil heat content (Ght1)</td>
<td>A</td>
<td>500 J/m(^2)</td>
<td>3 h</td>
<td>0.5 deg</td>
<td>0.3</td>
</tr>
</tbody>
</table>
\[\Delta \text{RMSE}^* \] [K]
\begin{array}{cccccc}
<table>
<thead>
<tr>
<th>Max. classification error [%]</th>
<th>0</th>
<th>5</th>
<th>10</th>
<th>20</th>
<th>30</th>
</tr>
</thead>
<tbody>
<tr>
<td>T_{\text{skin}}</td>
<td>3.08</td>
<td>0.21</td>
<td>0.19</td>
<td>0.18</td>
<td>0.15</td>
</tr>
<tr>
<td>T_{\text{soil}}</td>
<td>1.97</td>
<td>0.06</td>
<td>0.05</td>
<td>0.04</td>
<td>0.01</td>
</tr>
</tbody>
</table>
\end{array}

*Excl. times & locations with T_{\text{air}} > 7^\circ \text{C} or T_{\text{air}} < -7^\circ \text{C}

\[\Delta \text{RMSE} \text{ T}_{\text{skin}} = 0.15 \text{ K} \]

\[\Delta \text{RMSE} \text{ T}_{\text{soil}}(5\text{cm}) = 0.01 \text{ K} \]

Minimal improvements with realistic classification errors.

Farhadi et al., 2013, in prep.