Soil Moisture Active Passive Mission SMAP

Cal/Val Workshop #4 Nov 5-7, 2013

The Level 4 Carbon (L4_C) Algorithms

John Kimball, <u>Yonghong Yi</u>, Joe Glassy, Lucas Jones (UMT), Rolf Reichle, Joe Ardizonne (GSFC)

Not for Public Release or Redistribution. The technical data in this document is controlled under the U.S. Export Regulations; release to foreign persons may require an export authorization.

SMAP science objectives addressed:

- Quantify net ecosystem CO₂ exchange (NEE) in boreal landscapes;
- Improve understanding of processes linking terrestrial water, carbon & energy cycles;

Product requirements:

- Determine NEE daily, seasonal & annual variability & heterogeneity;
- Link NEE with component C fluxes (GPP, $\rm R_{eco})$ & primary moisture & thermal constraints to GPP & $\rm R_{eco};$

Product success criteria:

- Emphasis on northern (≥45°N) land areas;
- NEE accuracy (RMSE) commensurate with tower based C-fluxes (RMSE ≤30 g C m⁻² yr⁻¹).

¹Estimated Error Budget (RMSE) for NEE

¹Derived from MODIS, FT-ESDR & MERRA inputs

Net Ecosystem CO₂ Exchange (NEE)

•Approach: Apply LUE & soil Decomp. Algs. driven by SMAP & other ancillary inputs;

•Dynamic Inputs: FT (L3_SM_A); SM, T_s (L4_SM); R_{sw}, VPD, T_{mn} (GMAO); FPAR (MODIS);

•**Outputs**: NEE (validated); GPP, R_h, SOC, EC & QA metrics (research);

•Domain: Global vegetated areas;

- •Resolution: 9 km (1 km processing);
- •Temporal fidelity: Daily;

•Accuracy: Emphasis on northern land areas; NEE RMSE \leq 30 g C m⁻² yr⁻¹ relative to tower C-flux Obs.

Model initialization:

•Site, region & global L4_C simulations using tower (FLUXNET), satellite (MODIS, AMSR) & reanalysis (MERRA) drivers;

Model calibration and evaluation:

•Model calibration (BPLUT) and options assessment using FLUXNET & global C products (MOD17, MTE, SOC inventories, model intercomparisons);

Ancillary data assembly:

•SOC, FPAR climatology, etc.

¹Model Intercomparison Studies

в

NPP Anomalies

GPP Anomalies

60

120

А

¹McGuire et al. 2012. *Biogeosci Discuss*. 9. ²Yi et al., 2013. *JGR - Biogeosci*. 118.

360

300

240

180 Days (2005)

Rehearsal 1 Objectives for L4_C Product

Primary:

- Test delivery & reliability of near real-time tower data from participating core tower site partners;
 - ~weekly latency; daily fidelity; well characterized uncertainty
- Test JPL matchup tools & data transfer logistics;
- Test UMT software tools & resources for evaluating matchups.

Secondary:

• Test primary L4_C validation activities.

Constraints:

- Match-ups not temporally consistent;
- Limited number of core sites;
- Prototype L4_C software with coarse (0.5°) model outputs & Met. drivers (MERRA).

Phenology Representation (US-PFa¹, Mixed Forest)

Water Stress Characterization (US-SRM², Woody Savanna)

Soil Moisture Constraints in Boreal/Arctic C Cycle

Important role of soil moisture in boreal/arctic C cycle:

- Decoupling of soil moisture & temperature in boreal/arctic area;
- Potentially different responses of GPP and R_{eco} to soil moisture.

L4_C Cal/Val Rehearsal 2

More tower sites for validation:

- Involve all (~17) core tower sites, emphasizing northern biomes;
- Secondary sites (~80), global representation.

Mature L4_C software for comparisons:

- Co-located in space & time (core sites);
- Tower footprint vs. 1-9 km outputs;
- Model sensitivity runs to distinguish relative error sources (L4_C simulator)

Synergistic land C products:

- L4_C simulator outputs
- MODIS (MOD/MYD17) GPP
- Soil Carbon (SOC) inventories [static]
- Upscaled, Obs. based C products (MTE)
- Field campaigns (AirMOSS, SMAPVEX)

BACKUP SLIDES

- Defines PFT biophysical response characteristics for each 1-km grid cell
- Calibrated using global tower network observations (FLUXNET)
- Flexible design for global operational processing

Parameter	Units	Plant Functional Type (PFT)							
		ENF	EBF	DNF	DBF	GRS	SRB	CCRP	BCRP
ε _{mx}	(g C MJ ⁻¹)	1.10	1.20	1.10	1.20	0.85	0.85	1.10	1.10
Min _{Tmn}	(°C)	-8.0	-8.0	-8.0	-6.0	-8.0	-8.0	-8.0	-8.0
Max _{Tmn}	(°C)	8.3	9.1	10.4	9.9	12.0	8.8	12.0	12.0
Min _{VPD}	(Pa)	500	1800	500	500	752	500	500	500
Max _{VPD}	(Pa)	4000	4000	4160	4160	5500	4455	5071	5071
Min _{SM}	(% Sat.)	20	20	20	20	20	20	20	20
Max _{SM}	(% Sat.)	70	70	70	70	70	70	70	70
F _{FT}	(DIM)	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
NF _{FT}	(DIM)	1	1	1	1	1	1	1	1
C _{fract}	(DIM)	0.49	0.71	0.67	0.67	0.76	0.62	0.78	0.78
CUE	(DIM)	0.55	0.45	0.55	0.55	0.6	0.6	0.55	0.55
R _a :GPP	(DIM)	0.45	0.55	0.45	0.45	0.4	0.4	0.45	0.45
K _{mx}	(d-1)	0.0301	0.0301	0.0301	0.0301	0.0301	0.0301	0.0301	0.0301
K _{str} :K _{met}	(%)	40.0	40.0	40.0	40.0	40.0	40.0	40.0	40.0
K _{rec} :K _{met}	(%)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
T _{opt}	(°C)	20.0	25.0	20.0	25.0	25.0	25.0	25.0	25.0
SM _{opt}	(% Sat.)	60	60	60	60	60	60	60	60
а	(DIM)	9.90	9.90	9.90	9.90	9.90	9.90	9.90	9.90
b	(DIM)	-6.13	-6.13	-6.13	-6.13	-6.13	-6.13	-6.13	-6.13
с	(DIM)	2.50	2.50	2.50	2.50	2.50	2.50	2.50	2.50

MODIS (MCD12Q1) Land Cover Classification

- PFT classes: Evergreen needleleaf forest (ENF), evergreen broadleaf forest (EBF), deciduous needleleaf forest (DNF), deciduous broadleaf forest (DBF), grassland (GRS), shrubland (SRB), cereal crop (CCRP), broadleaf crop (BCRP)

- Masked areas: Barren (BAR), Urban (URB), permanent ice/snow (ICE), open water (WAT)