Soil Moisture
Active Passive
Mission
SMAP

ComRAD Active / Passive L Band Instrument System

Peggy O’Neill
NASA Goddard Space Flight Center

3rd Cal/Val Workshop
Nov. 14-16, 2012

ComRAD Active / Passive L Band Instrument System

Frequency: 1.403-1.424 GHz L radiometers; 1.25-1.3 L band radar

Polarization: dual pol radiometers (LH and LV) quad pol L radar (HH, VV, VH, HV)

Antenna: 1.22 m parabolic dish w/broadband feed

Incidence Angle Range: 0° - 175°

Azimuth Angle Range: 0° - 300° autonomous 0° - 360° manual

Platform: 19-m hydraulic boom truck

Power: standard AC line power

TIR sensor installed for scene temperature

Can accommodate CropScan VISIR sensor

Deployed Over Corn Stubble During SMAPVEX08 (Oct. 2008)
Anechoic Chamber Tests

Performance check of new antenna reflector and feed system in GSFC’s anechoic chamber on February 24, 2012

-- new system is very low loss

-- additional pattern measurements made in March 2012
ComRAD Crop Active / Passive Experiment [APEX12]

• **Objective** – to obtain a continuous active/passive L band data set over an entire growing season for use in refining SMAP algorithms

• **Location** – USDA OPE3 test site a few miles from GSFC

• **Crop Cover**
 -- measure two crops simultaneously (corn to north of truck staging area, soybeans to the south)

• **Autonomous data collection to maximize efficiency**
 -- manual external radiometer calibration once per week (sky, absorber)
 -- truck boom stowed & measurement series temporarily interrupted whenever rain/thunderstorms were forecast -- frequently, though overall field conditions were very warm and dry all summer; corn canopy stunted due to drought

• **Use of new very low loss antenna system and thermal control to maintain system calibration and to resolve small signals**
USDA OPE3 Test Site
Subwatershed C

-- site is a few miles down the road from GSFC

-- N-S rows

-- corn to north of truck, soybeans to south

-- AC power installed at site

-- corn planted ~ May 16, sprayed May 24, harvested October 17-18

-- soybeans planted June 14, harvested October 26

-- SCAN station to SW; flux tower to NE

November, 2012 SMAP Cal/Val Workshop
ComRAD L-band Active/Passive Measurements
Summer 2012

- **Vegetation Types**: Corn and Soybeans planted
- **Duration**: June 1 to mid-October, 2012 (planting to harvest)
- **L-band Active/Passive** data were acquired at a look angle of 40\(^\circ\) from nadir at both horizontal & vertical polarization
- **Radar** - 120\(^\circ\) azimuthal scan in 4 min. (60 independent measurements)
- **Radiometer** measurements every 15\(^\circ\) in azimuth in a span of 120\(^\circ\) in 20 min. (7 independent measurements)
- **Plant** architectural measurements of stalk and leaf sizes, orientations and densities on each field (weekly)
- **In situ** soil moisture, soil temperature & leaf wetness measurements made (also TIR measurement from ComRAD)
Corn harvested on Oct. 17-18; soybeans on Oct. 26
Additional ComRAD measurements on Oct. 19, 20, 21, 24
APEX12 Cover Crops

<table>
<thead>
<tr>
<th>Corn</th>
<th>Soybeans</th>
</tr>
</thead>
<tbody>
<tr>
<td> 060112</td>
<td> 060112</td>
</tr>
<tr>
<td> 070312</td>
<td> 070312</td>
</tr>
<tr>
<td> 071012</td>
<td> 071012</td>
</tr>
<tr>
<td> 081112</td>
<td> 081112</td>
</tr>
<tr>
<td> 091712</td>
<td> 091712</td>
</tr>
<tr>
<td> 101812</td>
<td> 101812</td>
</tr>
</tbody>
</table>
Example of ComRAD Time Series Data
August 27 – September 1, 2012

Radiometer

Soybeans

Incidence Angle = 40°

220 240 260 280 300 320
Temperature [K]

220 240 260 280 300 320
Temperature [K]

Incidence Angle = 40°

Radar

Soybeans

Incidence Angle = 40°

Corn

Incidence Angle = 40°
Summary

- Corn planted 5/16, sprayed 5/24, and harvested 10/17-18; soybeans planted 6/14 and harvested 10/26

- ComRAD measurements June 1 – Sept. 26, plus additional measurements in mid-October with corn harvested & soybeans at full senescence

- Final external radar calibration has been completed and instruments removed for the winter [we just beat Hurricane Sandy!]

- Three months of preliminary ComRAD and ground truth data have been delivered to JPL so far

- Complete final data set will be delivered when all data files have been checked (~ end of November)

- Mike Cosh / USDA will do quality check and calibration of all ground truth data before delivery to JPL
New Communication/Control Set-up

Instruments Mounted on The Boom

VNA-Based Radar

Radiometer

Boom Controller & Measurement Scheduler

Router

Instruments on Ground

USP to CAN

Cat 5

Cat 5

GPIB & Extender

Cat 5

VB 2008

VB 2005

October 3-5, 2012 SDT #9
A Controller Area Network (CAN) computer controls boom motion.

CAN computer is connected to hydraulic actuators and position sensors via the CAN network.

CAN computer is controlled remotely from a laptop computer via a serial port.

The motion program resides on the laptop computer.

Boom motion is fully automated for area sweeps and stationary look angles.

Automation is fully functional.
Boom Controller & Measurement Scheduler

Screen shots of new autonomous control program
Schedule [APEX12]

- **February / March:**
 - first test of new antenna and feed in anechoic chamber on 2/24/12
 - finish matched network
 - additional tests as needed in chamber to fully characterize performance of new antenna system
 - standard linearity test of radiometer components in GSFC lab (done every year)

- **April:**
 - reinstall all equipment on truck instrument platform
 - build instrument sun & rain shades as needed and install on truck platform
 - do final balancing of autonomous movement and calibration of program parameters
 - perform external calibration of radar & radiometer at GSFC

- **Beginning of May**
 - farm manager at USDA plants corn at OPE3 test site (depends on weather & other factors)
 - deploy ComRAD to OPE3 just after corn planting
 - might have to temporarily remove truck from field during atrazine spraying

- **Beginning of June**
 - farm manager at USDA plants soybeans at OPE3 test site (depends on weather & other factors)
 - might have to temporarily remove truck from field during soybean planting

- **Nominal science measurements May - October**
 - from planting at beginning of May to harvest in mid-October
 - manual calibration once per week (more often if needed)
 - truck boom will be stowed & measurement series temporarily interrupted if heavy rain/thunderstorms are forecast

- **Already completed:**
 - autonomous boom movement program & measurement control program & interfaces written
 - power installed at USDA OPE3 site
Impassible field conditions at OPE3 Subwatershed C in Fall 2011 prevented planting of winter wheat