## Inter-Comparison of Aquarius and SMOS Brightness Temperature Observations

Rajat Bindlish, Thomas Jackson, Tianjie Zhao, Gary Lagerloef, David Le Vine, Simon Yueh, Yann Kerr

Nov 6, 2013

# Overview

- Introduction
- Objectives
- Methodology
- Comparison results for areas with concurrent Aquarius and SMOS observations
- Vicarious targets

# Introduction

- Verifying the calibration of the L-band radiometer data (SMOS, Aquarius, SMAP) over the entire dynamic range is necessary.
- Land brightness temperatures over land fall in a completely different range of response and it is prudent to verify that the primary calibration extends to these levels.
- It is a challenge to validate TB over land using models because there are more factors that contribute to TB and the footprints are more heterogeneous than the oceans.
- Inter-comparison with other L-band radiometers can use used as a cal/val tool for radiometer L1 calibration

# Approach

- Use SMOS as a tool in assessing the calibration of the Aquarius radiometer over land
- On orbit inter-comparison of two L-band radiometers
- Need for consistent observations:
  - Aquarius and SMOS provide an opportunity to check each others calibration
  - Critical to develop a long-term climatic data record of L-band brightness temperature observations
  - A physical algorithm for development of a long term environmental data record that spans multiple L-band missions requires consistent input observations
  - It is prudent that all L-band radiometers (SMOS, Aquarius and SMAP) have a consistent calibration

## **SMOS**

- Launched Nov 2009
- 2D-synthetic aperture
  - Multiple incidence angles at every location [0°-65°]
- Sun Synchronous orbit with an ascending orbit of 6:00 AM
- Spatial resolution 40 km •
- Swath 1400 km
- 3 day global coverage



## Aquarius

- Launched June 2011
- Real aperture
  - Three incidence angles of 29.36°, 38.49°, 46.29°
- Sun Synchronous orbit with an descending orbit of 6:00 AM
- Spatial resolution 100 km •
- Swath 350 km
- 7 day global coverage
- 7 day exact repeat



## SMAP

- Launch Nov 2014
- Conically Scanning Real aperture
  - Constant incidence angle of 40°
- Sun Synchronous orbit
  with an descending orbit
  of 6:00 AM
- Spatial resolution 40 km
- Swath 1050 km
- 3 day global coverage
- 8 day exact repeat



## **Aquarius and SMOS inter-comparison methodology**

- Approach: Inter-compare the TOA TB observed by SMOS and Aquarius
- Concurrent observations in both time (within 30 min  $\rightarrow$  eliminates effect of change in physical temperature) and space (same location)
- Aquarius and SMOS inter-comparison notes
  - Aquarius evaluation Version 2.3
  - SMOS Version 5.05
  - Period of record : August 25, 2011 July 31, 2013
  - Land and ocean
  - Concurrent SMOS and Aquarius observations within 30 min
  - Same incidence angle (after re-processing SMOS data)
  - Only alias free portions of SMOS observations
  - Multiple SMOS DGG locations within a single Aquarius footprint
  - Min number of SMOS observations per Aquarius footprint required- 20 (to minimize partial Aquarius footprint coverage)
  - Std. Dev. of SMOS data averaged < 5 K (land) and 1 K (ocean) (to minimize footprint variability; also results in screening RFI)</li>
  - Differences in azimuth angle and orientation of the footprints ignored

### **Comparison between Aquarius and SMOS (ocean)**



## **Comparison between Aquarius and SMOS over Ocean** Summary Statistics

|       |                 | RMSD (K) | Bias [Aq-SMOS]<br>(K) |
|-------|-----------------|----------|-----------------------|
| H pol | Inner (29.36°)  | 1.22     | 0.77                  |
|       | Middle (38.49°) | 1.73     | 1.24                  |
|       | Outer (46.29°)  | 1.33     | 1.08                  |
| V pol | Inner (29.36°)  | 2.67     | 2.51                  |
|       | Middle (38.49°) | 1.83     | 1.61                  |
|       | Outer (46.29°)  | 0.78     | 0.09                  |

Version 2.3

## **Comparison between Aquarius and SMOS over Ocean** Summary Statistics

|       |                 | RMSD (K)           | Bias [Aq-SMOS]<br>(K) |
|-------|-----------------|--------------------|-----------------------|
| H pol | Inner (29.36°)  | 1.22 (1.29)        | 0.77 (0.76)           |
|       | Middle (38.49°) | 1.73 (1.77)        | 1.24 (1.20)           |
|       | Outer (46.29°)  | 1.33 (1.35)        | 1.08 (0.98)           |
| V pol | Inner (29.36°)  | 2.67 (2.71)        | 2.51 (2.50)           |
|       | Middle (38.49°) | 1.83 (1.82)        | 1.61 (1.53)           |
|       | Outer (46.29°)  | 0.78 <b>(0.90)</b> | 0.09 (-0.08)          |

Version 2.3 Version 2.0

### **Comparison between Aquarius and SMOS (land)**



## **Comparison between Aquarius and SMOS over Land** Summary Statistics

|       |                 | RMSD (K) | R      | Bias [Aq-SMOS]<br>(K) |
|-------|-----------------|----------|--------|-----------------------|
| H pol | Inner (29.36°)  | 4.35     | 0.9703 | 3.67                  |
|       | Middle (38.49°) | 4.28     | 0.9858 | 3.89                  |
|       | Outer (46.29°)  | 4.51     | 0.9786 | 3.78                  |
| V pol | Inner (29.36°)  | 3.10     | 0.9897 | 2.78                  |
|       | Middle (38.49°) | 3.80     | 0.9850 | 3.31                  |
|       | Outer (46.29°)  | 3.10     | 0.9861 | 2.36                  |

| ТВ        | ΔΤΒ       | Version 2.3 |
|-----------|-----------|-------------|
| 240-280 K | 4 K (H)   |             |
| 260-300 K | 3-4 K (V) |             |

## **Comparison between Aquarius and SMOS over Land** Summary Statistics

|       |                 | RMSD (K)    | R               | Bias [Aq-SMOS]<br>(K) |
|-------|-----------------|-------------|-----------------|-----------------------|
|       | Inner (29.36°)  | 4.35 (8.60) | 0.9703 (0.9687) | 3.67 (8.34)           |
| H pol | Middle (38.49°) | 4.28 (8.49) | 0.9858 (0.9860) | 3.89 (8.35)           |
|       | Outer (46.29°)  | 4.51 (8.12) | 0.9786 (0.9830) | 3.78 (7.88)           |
|       | Inner (29.36°)  | 3.10 (6.27) | 0.9897 (0.9892) | 2.78 (6.15)           |
| V pol | Middle (38.49°) | 3.80 (7.37) | 0.9850 (0.9854) | 3.31 (7.20)           |
|       | Outer (46.29°)  | 3.10 (6.53) | 0.9861 (0.9882) | 2.36 (6.29)           |

#### Version 2.3 Version 2.0

### **Comparison between Aquarius and SMOS**



## **Comparison between Aquarius and SMOS**

- Scatter possibly due to:
  - RFI (possible RFI in SMOS/Aquarius)
  - Heterogeneous footprint
  - Different azimuth angles
  - Noise in SMOS and Aquarius data
- Intercomparison results:
  - Very high correlation between SMOS and Aquarius observations
  - Systematic difference in gain and offset for all channels
  - H-pol bias greater than V-pol bias for all beams
  - Expecting improvements in future versions
- Results similar between v2.0 and v2.3 for ocean observations
- The bias is reduced by about 4K (reduced by half) to 3-4 K in version 2.3
- The general trends for the inter-comparison same as earlier

## **Vicarious Calibration Targets**

- Amazon
  - Hot target
- Dome-C
  - Stable cold target in Antarctica
    - ESA has done extensive studies over this location.
    - Multi-year field experiment with a ground based radiometer (RADOMEX)

## Amazon

- Max e (emissivity)
- e is independent of incidence angle and polarization (can be investigated using SMOS)
- Low St Dev of e (signal is almost saturated and surface effects are minimal)
- SMOS observations at 10 different incidence angles ranging from 20-50 degrees used to identify candidate areas
- St. Dev. less than 0.02 for all angles
- Difference in mean for all angles and polarizations less than 0.02 [Mean( $e_i$ ) Mean( $e_i$ ) <0.02]







- Surface temperature effects eliminated by the use of land surface emissivity (NCEP surface temperature)
- Very little difference in Asc and Dsc observations over Amazon
- H and V pol observations are similar

Η

- TB and emissivity does not change with incidence angle for both h- and v-pol
- Variability Aquarius has higher stability (lower St. Dev.)
- Consistent difference between Aquarius and SMOS observations

### Amazon

## **Vicarious Targets**

- Amazon
  - Hot target
- Dome-C
  - Stable cold target in Antarctica
    - ESA has done extensive studies over this location.
    - Multi-year field experiment with a ground based radiometer (RADOMEX)

#### Aquarius (Asc)

Aquarius (Dsc)

SMOS (Asc)

#### SMOS (Dsc)



- Very little difference in Asc and Dsc observations over Dome-C
- Variability Aquarius has higher stability (lower St. Dev.)
- V pol observations higher than h pol for both satellites
- TB increases with incidence angle for v-pol and vice versa for h-pol
- Bias between Aquarius and SMOS observations

**Dome-C** 

# Summary

- Results similar between v2.0 and v2.3 for ocean observations
- The bias is reduced by about 4K (reduced by half) to 3-4 K in version 2.3
- The general trends for the inter-comparison same as earlier
  - Very high correlation between SMOS and Aquarius observations
  - Systematic difference in gain and offset for all channels
  - H-pol bias greater than V-pol bias for all beams
- Aquarius observations compare well with SMOS observations over oceans (smaller differences of 1-2 K). How these TB differences translate to differences in SSS is not clear. SMOS does additional TB processing (OTT) before estimating SSS.
- Aquarius observations very stable over Dome-C
- SMOS observations lower than Aquarius observations for all channels over land (3-4 K difference between SMOS and Aquarius)
- Possibly due to Aquarius radiometer calibration (spill-over ratio)
- Anticipated to be fixed in future versions of Aquarius data
- Important to develop a consistent calibration across all L-band mission SMOS, Aquarius and SMAP



### Version 2.0



## Long term stability over Antarctica

Both instruments show good long term stability

Difference in sensitivity clearly evidenced

Summer surface changes induce noisier behavior at V polarization

Mean biases

|        | Н    | V    |
|--------|------|------|
| inner  | 6.11 | 5.54 |
| middle | 5.12 | 3.40 |
| outer  | 5.54 | 3.99 |



Francois Cabot, Yann Kerr