Use of Satellite Observations in SMAP Cal/Val

Rajat Bindlish, Thomas Jackson, Tianjie Zhao, Michael Cosh USDA ARS Hydrology and Remote Sensing Lab, Beltsville, MD

Acknowledgment:

Steven Chan¹, Peggy O'Neill², Eni Njoku¹, Andreas Colliander¹, Yann H. Kerr³

¹Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA

²NASA Goddard Space Center, Greenbelt, MD

³CESBIO, France

Presented at 3rd SMAP Cal/Val Workshop, Nov 14-16, 2012

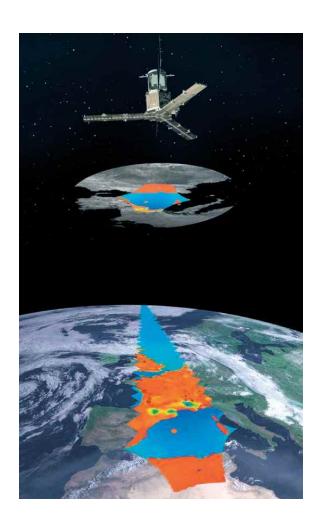
Overview

- SMAP data products
- Relevant Microwave satellites
- L1 data cal/val
- L2+ data cal/val
- Aquarius Soil Moisture
- SMOS/SMAP data in cal/val rehearsal

SMAP Data Products

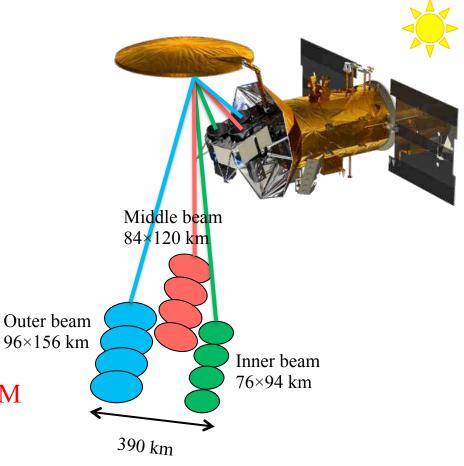
Data Product Short Name	Short Description	Gridding (Resolution)	Latency*	
L1A_Radar	Radar raw data in time order	-	12 hours	
L1A Radiometer	Radiometer raw data in time order	2	12 hours	
L1B_S0_LoRes	Low resolution radar σ_a in time order	(5x30 km)	12 hours	
L1B_TB	Radiometer T_B in time order	(36x47 km)	12 hours	
L1C_S0_HiRes	High resolution radar $\sigma_{ ho}$ (half orbit, gridded)	Instrument data		
LIC TB	Radiometer T. (half orbit, gridded)	36 km	12 hours	
L2_SM_A	Soil moisture (radar, half orbit)	3 km	24 hours	
L2_SM_P	Soil moisture (radiometer, half orbit)	36 km	24 hours	
L2_SM_A/P	Soil moisture (radar/radiometer, half orbit)	Olm Minne		
L3_F/T_A	Freeze/thaw state (radar, daily composite)	Science data		
L3_SM_A	Soil moisture (radar, daily composite)	3 km	50 hours	
L3_SM_P	Soil moisture (radiometer, daily composite)	36 km	50 hours	
L3 SM A/P	Soil moisture (radar/radiometer, daily composite)	9 km	50 hours	
L4_SM	Soil moisture (surface & root zone)	Value added data		
L4 C	Carbon net ecosystem exchange (NEE)			

^{*} Mean latency under normal operating conditions (defined as time from data acquisition by the observatory to availability to the public data archive). The SMAP project will make a best effort to reduce these latencies.


^{**} Over outer 70% of the swath.

Overview

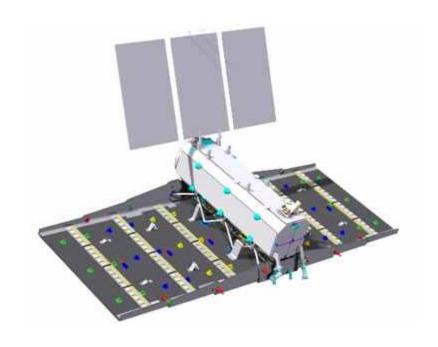
- SMAP data products
- Relevant Microwave satellites
 - SMOS
 - Aquarius
 - GCOM-W
 - SAOCOM
 - ALOS-2
- L1 data cal/val
- L2+ data cal/val
- Aquarius Soil Moisture
- SMOS/SMAP data in cal/val rehearsal


SMOS

- Passive microwave L-band 2D-synthetic aperture launched by ESA in Nov 2009
 - Multiple incidence angles (0-60 degrees) at every location along the swath
- Sun Synchronous orbit with an Ascending orbit of 6:00 AM
- Spatial resolution 40 km
- 3 day global coverage
- Provides L1 TB and L2 SM

Aquarius/SAC-D

- Mission (NASA and CONAE)
 - Sun-synch orbit [6 am (Des.)]
 - Night time look direction
 - 657 km Alt; 7 day revisit
 - Launch: June 2011
- Aquarius Instrument
 - L-band Polarimetric
 - Radiometer and Scatterometer
 - 3 Beam Pushbroom
 - Incidence angles of 29.36°, 38.49°, and 46.29°
- Provides L1 TB, sigma and L2 SM
- SAC-D
 - MWR (8 beams at 37 GHz)
 - Other


GCOM-W/AMSR2

- Successor to AMSR-E
- Launched by JAXA in 2012
- Sun Synchronous orbit with an Ascending orbit of 1:30 PM (A-train)
- Frequencies
 - 6.925, 7.32 (C-band), 10.65 (X-band), 18.7, 23.8, 36.5, 89.0 GHz
- Provide a long term climate data record for brightness temperature and soil moisture (along with AMSR-E)
- Swath 1400 km
- 3 day global coverage
- Provides L2 SM

SAOCOM

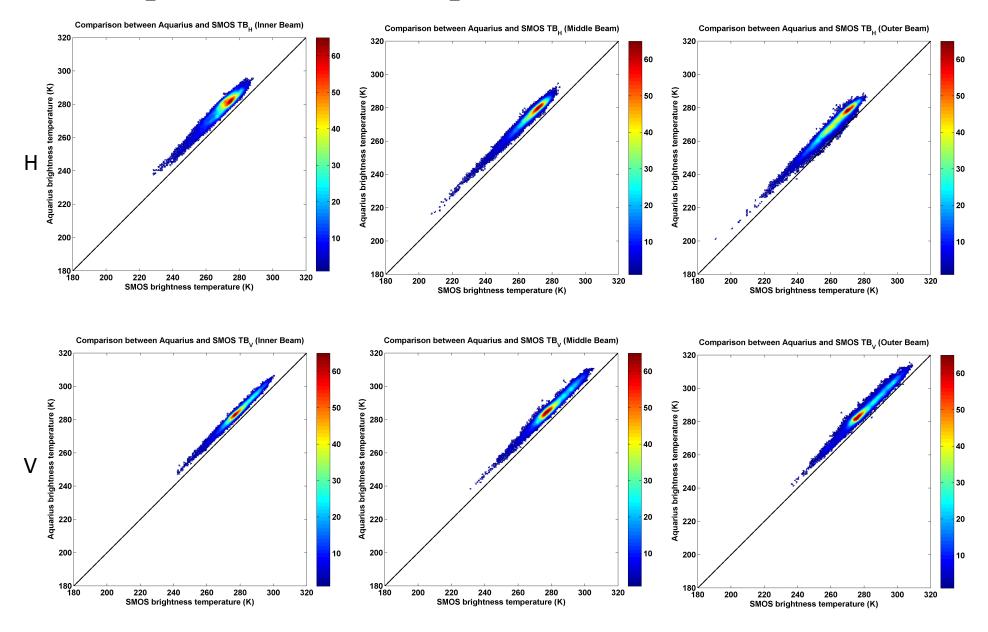
- Consists of SAOCOM-1 (launch 2014) and SAOCOM-2 (launch 2015)
- L-band SAR
- Resolution of 7m to 100 m
- Swath width of 50 km to 400 km
- Revisit time of 16 days
- Provides L1 sigma and L2 SM
- Details presented previously

ALOS-2

- Follow-on to the ALOS mission
- L-band SAR developed by JAXA
- Descending overpass of 12 noon
- Resolution of 1 m to 100 m
- Swath width of 25 km to 350 km
- Revisit time of 14 days
- Provides L1 sigma and L2 SM

Overview

- SMAP data products
- Relevant Microwave satellites
- L1 data cal/val
- L2+ data cal/val
- Aquarius Soil Moisture
- SMOS/SMAP data in cal/val rehearsal

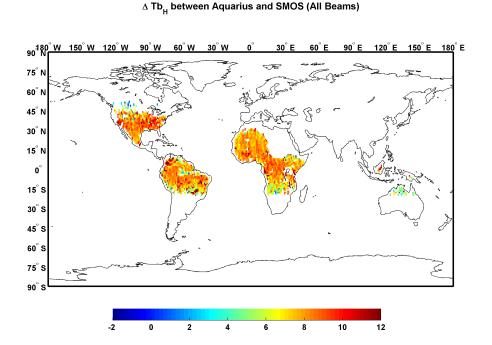

Need for satellite inter-calibration

- On orbit inter-comparison of multiple L-band radiometers
- Need for consistent observations:
 - SMAP, Aquarius and SMOS provide an opportunity to check each others calibration
 - Critical to develop a long-term climatic data record of L-band brightness temperature observations
 - A physical algorithm for development of a long term environmental data record that spans multiple L-band missions requires consistent input observations

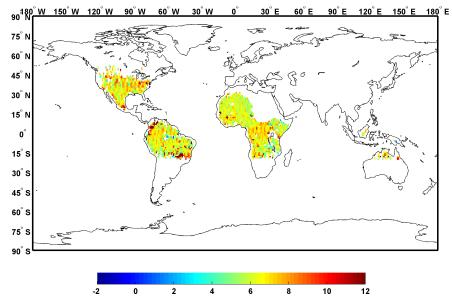
Inter-comparison example (Aquarius and SMOS)

- Recognize that during Cal/Val that there will be some possible calibration issues and to check if the data is consistent with other L-band observations
- Approach: Use L-band satellite observations from multiple satellites as a tool in assessing the calibration of the SMAP radiometer
- Concurrent observations in both time (within 30 min → eliminates effect of change in physical temperature) and space (same location)
- Aquarius and SMOS inter-comparison notes
 - Aquarius evaluation Version 1.3.5
 - Period of record : August 25, 2011 August 31, 2012
 - Land and ocean
 - Concurrent SMOS and Aquarius observations within 30 min (results in data only between latitudes ∼[40, -20])
 - Same incidence angle (after re-processing SMOS data)
 - Only alias free portions of SMOS observations
 - Multiple SMOS DGG locations within a single Aquarius footprint
 - Min number of SMOS observations per Aquarius footprint required— 20 (to minimize partial Aquarius footprint coverage)
 - Std. Dev. of SMOS data averaged < 5 K (land) and 1 K (ocean) (to minimize footprint variability; also results in screening RFI)
 - Differences in azimuth angle and orientation of the footprints ignored

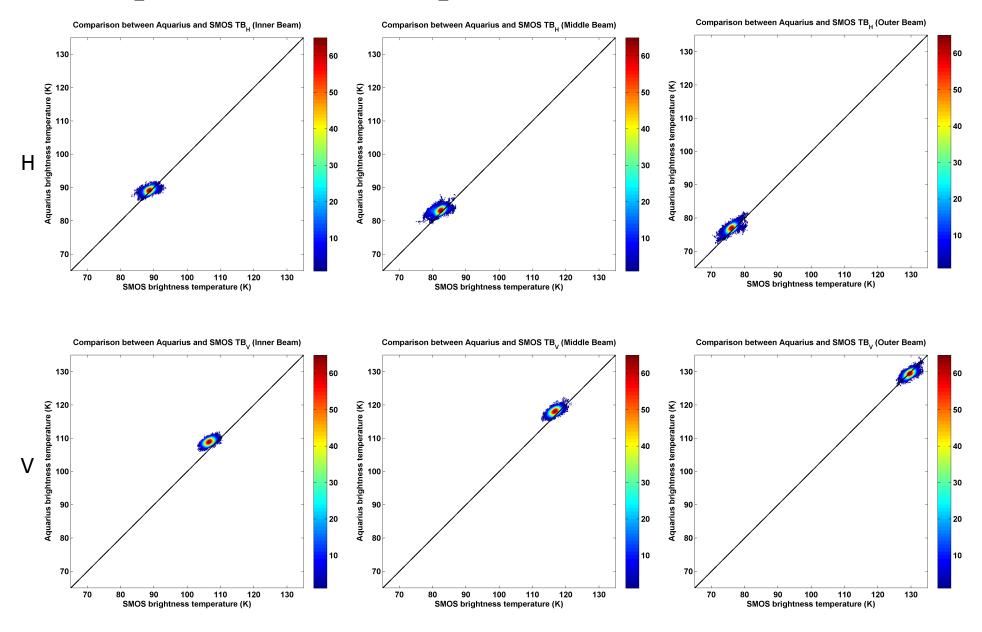
Comparison between Aquarius and SMOS over Land

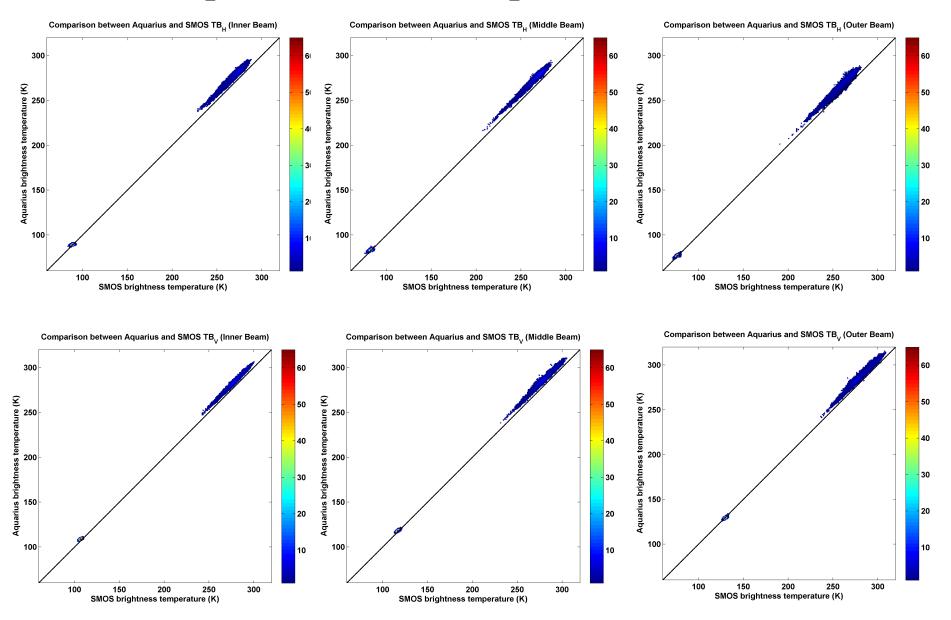


Comparison between Aquarius and SMOS over Land Summary Statistics


		RMSD (K)	R	Bias [Aq-SMOS] (K)
	Inner (29.36°)	8.47	0.9697	8.16
H pol	Middle (38.49°)	8.50	0.9851	8.32
	Outer (46.29°)	8.10	0.9787	7.76
	Inner (29.36°)	6.03	0.9906	5.89
V pol	Middle (38.49°)	7.27	0.9848	7.04
	Outer (46.29°)	6.68	0.9853	6.38

Comparison Between Aquarius and SMOS over Land

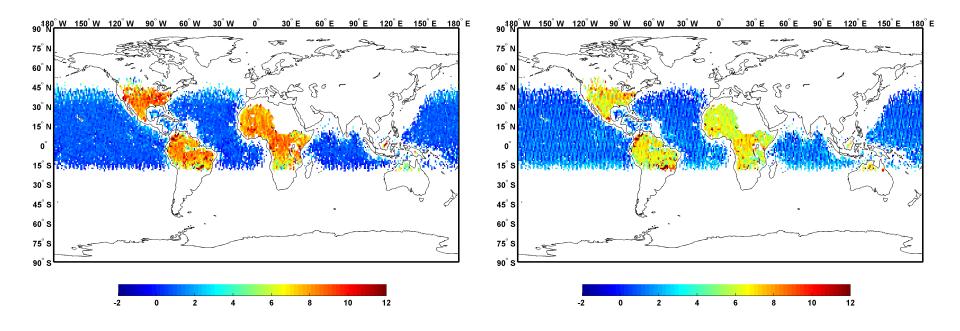

- RFI regions were screened out of the analysis
- All channels show a bias between SMOS and Aquarius observations
- H-pol bias greater than V-pol bias for all beams
- Middle beam (38.49°) has more scatter than the inner beam (29.36°)
- Outer beam has the most scatter and outliers
- H-pol TB decreases with increase in incidence angle and vice versa for V-pol (consistent with expected behavior).


Comparison between Aquarius and SMOS over Ocean

Comparison between Aquarius and SMOS over Ocean Summary Statistics

		RMSD (K)	R	Bias [Aq-SMOS] (K)
	Inner (29.36°)	1.10	0.5600	0.57
H pol	Middle (38.49°)	1.64	0.4830	1.06
	Outer (46.29°)	1.22	0.7480	0.93
V pol	Inner (29.36°)	2.49	0.5873	2.33
	Middle (38.49°)	1.62	0.6225	1.36
	Outer (46.29°)	0.79	0.6988	-0.18

Comparison between Aquarius and SMOS



Comparison between Aquarius and SMOS

- Intercomparison results:
 - SMOS and Aquarius compare well over oceans
 - Very high correlation between SMOS and Aquarius observations
 - Systematic difference in gain and offset for all channels
 - expecting improvements in future versions
- Scatter possibly due to:
 - RFI (possible RFI in SMOS/Aquarius)
 - Heterogeneous footprint
 - Different azimuth angles
 - Noise in SMOS data

∆ Tb_⊔ between Aquarius and SMOS (All Beams)

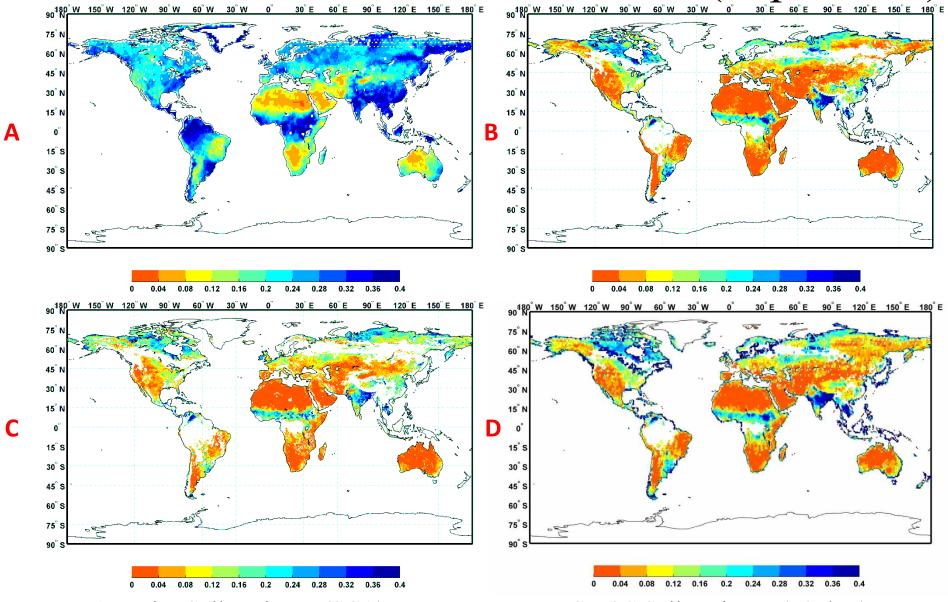
△ Tb_V between Aquarius and SMOS (All Beams)

Inter-comparison summary

- Aquarius data calibration has focused on ocean observations through the cal/val phase
- Aquarius observations compare well with SMOS observations over oceans
- Scatter due to:
 - RFI (possible RFI in SMOS/Aquarius)
 - Heterogeneous footprint
 - Different azimuth angles
 - Noise in SMOS observations
- Aquarius observations very stable
- SMOS observations lower than Aquarius observations for all channels over land
- Aquarius team advisory: The data has been validated over oceans but not land

Overview

- SMAP data products
- Relevant Microwave satellites
- L1 data cal/val
- L2+ data cal/val
- Aquarius Soil Moisture
- SMOS/SMAP data in cal/val rehearsal


L2 data cal/val using Multiple Satellites

- Satellite VSM products provide a global comparison
- In situ data can provide validation resources over a limited domain
- Provide a tool to evaluate the spatial and temporal consistency
- Spatial resolution compatible with SMAP products

L2 data cal/val using Multiple Satellites

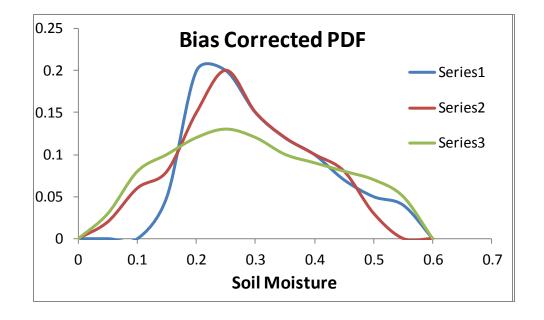
- Multiple Soil Moisture satellite products
 - SMOS
 - Aquarius
 - SMAP
 - GCOM-W
- SMOS, GCOM-W and Aquarius products should be mature by SMAP launch
- These missions have independent resources for their cal/val activities (possible to leverage resources)
- Model products from GMAO, NCEP, ECMWF

Four Global Soil Moisture Products (Sept. 2011)

- D Aquarius Soil Moisture (SCA)
- A NCEP Soil Moisture

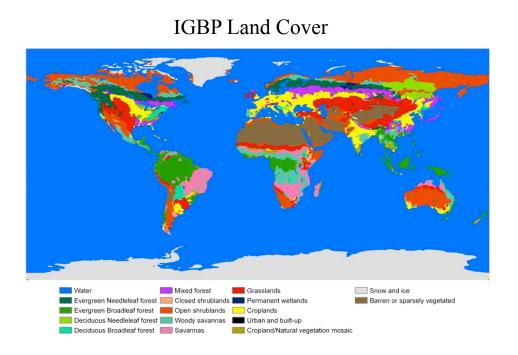
- SMOS Soil Moisture (L2 data)
- **B** SMOS/SMAP SCA Soil Moisture

L2 data cal/val


• Error (RMSE)
$$RMSD = \sqrt{\frac{\sum (x - y)^2}{N}}$$

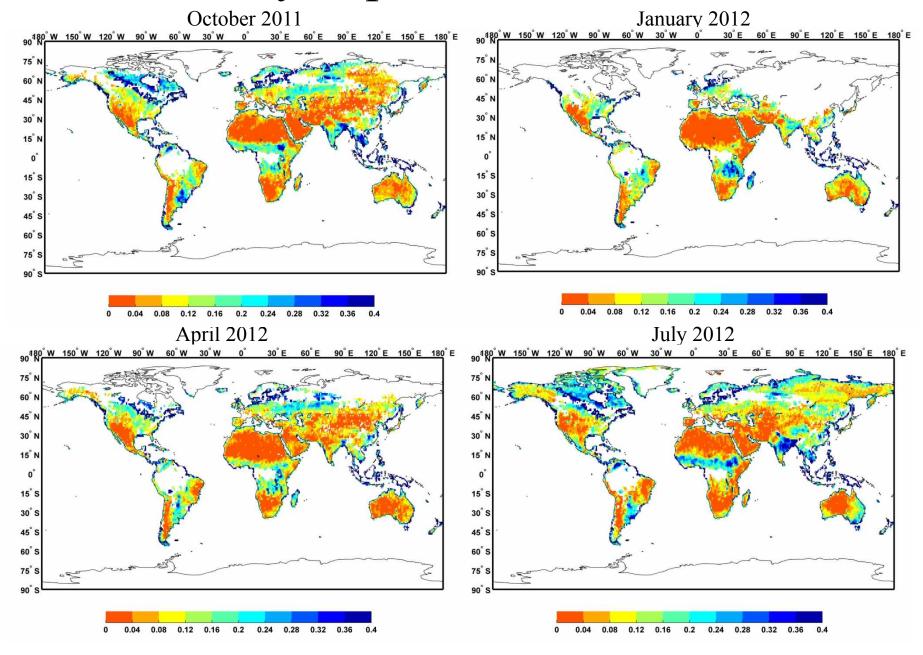
• Bias
$$Bias = \frac{\sum (x - y)}{N}$$

- Unbiased RMSE $uRMSE = \sqrt{RMSE^2 + Bias^2}$
- Correlation Coefficient $r = \frac{\sum (x x)(y y)}{\sigma_x \sigma_y}$
- Triple Collocation
 - Error estimates between independent datasets

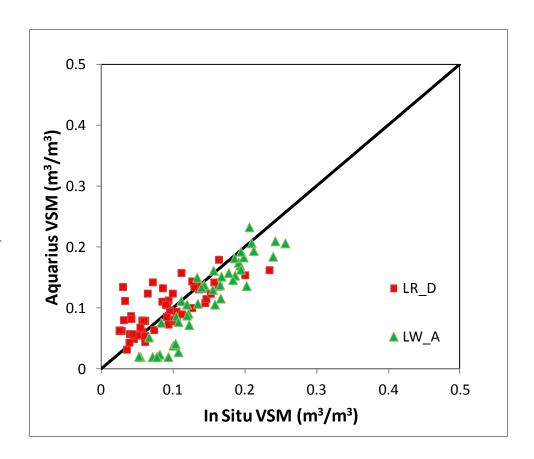

L2 data comparison

- Mean, Std. Dev,
 Skewness, Kurtosis
- Global data
- Unmodified product, Bias corrected
- Climatological Comparisons

Comparison between Soil Moisture products

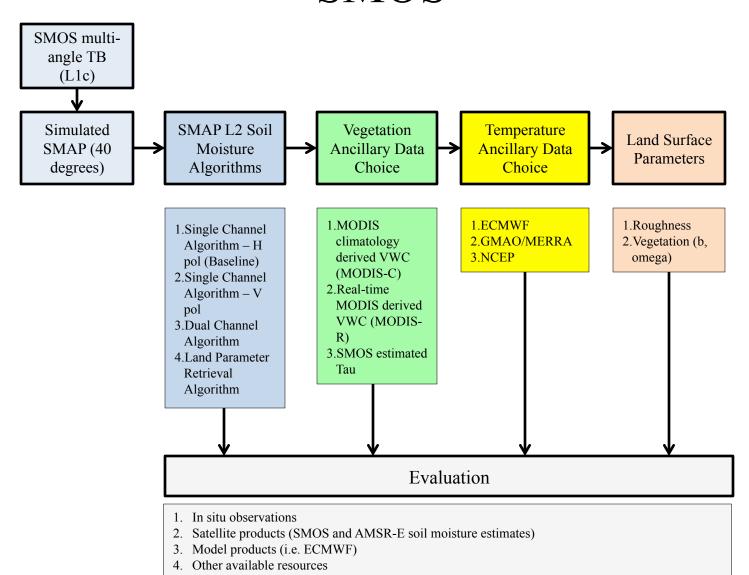

- Geographically
- Vegetation classes
- Seasons
- Comparison metric
 - RMSD
 - Correlation coefficient
 - Bias
- Bias corrected?
- Climatology corrected?

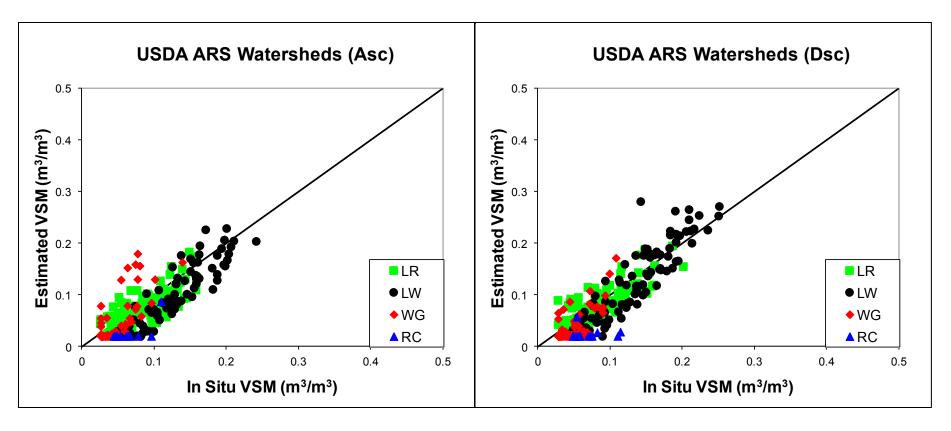
Overview


- SMAP data products
- Relevant Microwave satellites
- L1 data cal/val
- L2+ data cal/val
- Aquarius Soil Moisture
- SMOS/SMAP data in cal/val rehearsal

Monthly Aquarius Soil Moisture

Validation Results


- SCA algorithm (SMAP L2_SM_P baseline) used in Aquarius VSM
- Aquarius soil moisture compare well with in situ observations
- Validation was limited to LW and LR due to the size of Aquarius footprint.
- Incidence angle effects removed in Aquarius VSM
- RMSE $\sim 0.036 \text{ m}^3/\text{m}^3$, Bias $\sim 0.008 \text{ m}^3/\text{m}^3$


Overview

- SMAP data products
- Relevant Microwave satellites
- L1 data cal/val
- L2+ data cal/val
- Aquarius Soil Moisture
- SMOS/SMAP data in cal/val rehearsal

Evaluation of SMAP L2 Algorithm Using SMOS

SCA (SMOS) (h-pol) – Watershed Results

- Good range of observed soil moisture conditions
- SCA (h-pol) results compare well with in situ observations
- Dsc (6:00 PM) results are satisfactory

SCA (SMOS) – Watershed Results

Watershed		Ascend	ling		Descending			
	RMSE	Bias	R	N	RMSE	Bias	R	N
Little Washita, OK	0.037	-0.027	0.913	88	0.034	-0.007	0.904	92
Little River, GA	0.026	-0.009	0.752	97	0.024	-0.001	0.798	88
Walnut Gulch, AZ	0.027	-0.004	0.764	85	0.022	-0.012	0.733	95
Reynolds Creek, ID	0.039	-0.037	0.681	30	0.051	-0.045	0.346	26

RMSE (Root mean square error), and Bias are in m³/m³.

R=Linear correlation coefficient, N=Number of samples

- Low bias and RMSE for LR and WG (asc)
- Underestimation bias and low correlation for RC.
- Most of the error for LW and RC is due to dry bias.
- The sample size is small due to removal of the extended FOV TBs that results in a repeat cycle of about 9-10 days.

SMOS/SMAP data

- SMOS/SMAP product was successfully validated using USDA watersheds
- The SMOS/SMAP product should be validated over a wider set of validation sites
- Need to perform a rigorous comparison between different SMAP L2_P algorithms: Critical for algorithm selection.
- SMOS/SMAP data product will provide real world simulated SMAP radiometer observations and soil moisture product
- SMOS/SMAP data will be compared with SMOS, AMSR-E/GCOM-W and Aquarius data products

SMAP and SMOS/SMAP Data Products

Data Product Short Name	Short Description		Latency*
L1A_Radar	Radar raw data in time order	5	12 hours
L1A_Radiometer	Radiometer raw data in time order	2	12 hours
L1B_S0_LoRes	Low resolution radar σ_a in time order	(5x30 km)	12 hours
L1B_TB	Radiometer T_B in time order	(36x47 km)	12 hours
L1C_S0_HiRes	High resolution radar σ_o (half orbit, gridded)	1 km (1-3 km)**	12 hours
L1C_TB	Radiometer T_B (half orbit, gridded)	36 km	12 hours
L2_SM_A	Soil moisture (radar, hall orbit)	3 km	24 hours
L2_SM_P	Soil moisture (radiometer, half orbit)	36 km	24 hours
LZ_SM_A/P	Son moisture (radar/radiometer, nair orbit)	9 km	24 hours
L3_F/T_A	Freeze/thaw state (radar, daily composite)	3 km	50hours
L3 SM A	Soil moisture (radar, daily composite)	3 km	50 hours
L3_SM_P	Soil moisture (radiometer, daily composite)	36 km	50 hours
L3_SM_A/P	Soil moisture (radar/radiometer, daily composite)	9 km	50 hours
L4_SM	Soil moisture (surface & root zone)	9 km	7 days
L4_C	Carbon net ecosystem exchange (NEE)	9 km	14 days

^{*} Mean latency under normal operating conditions (defined as time from data acquisition by the observatory to availability to the public data archive). The SMAP project will make a best effort to reduce these latencies.

^{**} Over outer 70% of the swath.

Data Processing Lessons Learned

- AMSR-E went through 10 public data releases
- SMOS has been through 5 public data releases
- Aquarius has been through 8 complete internal re-processings (expected to be 10 at the end of cal/val period)
- Need for a through and cautious approach