

The Canadian Carbon Program and Fluxnet-Canada: Advancing Our Understanding of the Carbon Cycle of Canada's Forests and Peatlands Using a Research Network Approach

Hank Margolis, U. Laval

(presented by Alan Barr, Environment Canada)

44th Annual CMOS Congress
Ottawa, 2 June 2010

A European infrastructure dedicated to high precision monitoring of greenhouse gas fluxes

- Introduction
- Selected Highlights
 - Inter-annual variability
 - Disturbance
 - Modelling
- Accomplishments

Background

 Airborne fraction of global CO₂ emissions ~ 40%, ~30% re-uptake by oceans, ~30% re-uptake by land

• Questions:

- How do Canadian ecosystems contribute to the terrestrial C sink?
- Will the terrestrial C sink be sustained in the future? What are the controlling factors and critical uncertainties?
- Can the C cycle provide a point of convergence between environmental stewardship, economic activities and sustainable development?

Understanding the influence of climate variability and disturbance on C cycling in Canadian forests and peatlands

Supported by NSERC, CFCAS, BIOCAP, Environment Canada and Natural Resources Canada

FCRN/CCP Flux Towers

Mature Forests and Peatlands

Mixedwood Plains

FCRN/CCP Flux Towers

Juvenile Forests Following Disturbance

Mixedwood Plains

FCRN/CCP Flux Towers

Forest Management

Why Flux Tower Networks?

Regional and National Carbon Budget Estimates

Improved Predictions of Ecosystem and Climate Change

Improved Land Surface and Ecosystem Process Models

Parameterization

Process Understanding

Data Analysis

Model Evaluation

Integrated Stand- Level Databases

Data Management

Flux, Climate, and Biophysical Measurements

Canadian Carbon Program (CCP) 2007-2010+

Developing a scientific framework for reducing uncertainty in Canada's C budget

Linked to North American Carbon

Program's strategy of top-down, bottom-up

dual constraint

Supported by CFCAS, Environment Canada and Natural Resources Canada

Environment Canada's Greenhouse Gas Air Sampling Network (Doug Worthy) (FCRN/CCP collaborative sites in red)

Bottom-Up Top-Down Dual Constraint

Atmospheric Inversion Models

Regional and National Carbon Budget Estimates

Improved Land Surface and Ecosystem Process Models

Flux, Climate, and Biophysical Measurements

- Introduction
- Selected Highlights
 - Inter-annual variability
 - Disturbance
 - Modelling
- **Accomplishments**

Seasonal Sensitivity of Boreal Forest CO₂ Uptake to Interannual Variations in Soil Temperature

(contours show periods when linear regression is significant at 5% level)

Snowmelt and Spring Thaw (2005)

(thaw period is shaded green)

- Introduction
- Selected Highlights
 - Inter-annual variability
 - Disturbance
 - Modelling
- **Accomplishments**

CCP Synthesis: Forest Age and Carbon Uptake

(courtesy: Carole Coursolle & Hank Margolis)

Trajectory of CO₂ Uptake Following Harvest

(courtesy: Andy Black, Harry McCaughey & Alan Barr)

Forest Flux Towers: A Synthesis of Fire and Harvest Sites (courtesy: Brian Amiro)

Effect of Forest Stand Age on the Ratio of Gross Ecosystem Photosynthesis GEP to Respiration ER (NACP synthesis, Brian Amiro)

- Introduction
- Selected Highlights
 - Inter-annual variability
 - Disturbance
 - Modelling
- **Accomplishments**

Regional Bottom-Up Top-Down Comparison

(courtesy: Jing Chen)

Region

CCP's Initial Estimate of the Mean Annual Canadian and USA Land Sink 1994-2003

(courtesy: Jing Chen)

Region	C Sink (Pg C y ⁻¹)	% of Sink
Canada	0.14 ± 0.15	20%
USA	0.58 ± 0.15	80%

- Established a national standardized ecosystem flux network for Canada
- Advanced understanding and quantified the effects of inter-annual climate variability on the fluxes of carbon, water and energy of Canadian forests and peatlands
- Advanced understanding and quantified the effects of disturbance (harvest, fire, insects)

FCRN/CCP Accomplishments

- Rigorously evaluated Canadian ecosystem process models
- Developed a capability for integrating bottom-up and topdown C cycle models to provide regional and continental scale estimates of C fluxes

- Worked with those responsible for Canada's forest carbon accounting to integrate the effects of interannual climate variability into the accounting system
- Trained more than 120 graduate students and postdocs
- Contributed a large amount of data to the global flux database and participated in global scale analyses

Hank Margolis and the CCP gratefully acknowledge the support of CFCAS.

