Ecosystem and atmosphere modelling in EC/CRD

Douglas Chan, Misa Ishizawa, Stephane Belair, Doug Worthy

Outline

- Ecosystem model for GEM
 - Biome-BGC
 - Time dependent vegetation characteristics, e.g. LAI (climatological in GEM)
 - Flux (NEE) over Canada for carbon cycle research
- Concentration modelling in GEM
 - Synoptic features in concentration field
 - Comparison to continuous concentration measurements of CO2 and CH4 (signals from ecosystem and anthropogenic sources)

GEM LAI & MODIS

(from Gu et al. 2006)

MODIS LAI smoothed Useful to have modelled LAI to assimilate MODIS LAI

Biome-BGCCarbon Fluxes and Storages

LAI is a part of vegetation carbon (plant).

Photosynthesis (GPP)

Maintenance Respiration

Growth **R**espiration

Heterotrophic **R**espiration

Spin-up (GEM forcing)

Biome-BGC needs Spin-up before normal run

Daily BGC

The combination of Daily Spin-up and Hourly Normal Run has pro and con

Hourly BGC

Dominant Vegetation Map

Albedo for each vegetation is set to the following number:

nef	0.14
ndf	0.14
bef	0.12
bdf	0.18
shrub	0.16
C3/C4 grass	0.19

LAI and Albedo

 Interannual variation in maximum LAI

 Interannual variation in growing season start

 Less variation in growing season end

	2002	2003	2004	2005	2006
start	133	111	128	102	104
end	294	303	305	294	298

Unit: [day]

LAI Comparison: Conifer

LAI Comparison: Deciduous

BERMS Old Aspen (53.6N, 106.2W)

7 kmx7 km mean

MODIS

Solution 10.00

Underestimate deciduous LAI?

Comparison #2: NEP

Seasonal variations and anomalies

Unit: [kgC/m²/mo]

Vegetation Fraction Map in NA

No Deciduous Needle Leaf

Land types (Grass+ Crop) are divided based on C4 map

Mixed Vegetation: SKOA

BERMS Old Aspen (53.6N, 106.2W)

Site: Deciduous Broadleaf Forest

USGS/BGC:

Evergreen Needle Leaf: 8.2 %

Deciduous Broad Leaf: 57.0 %

Shrub : 33.6 %

C3grass : 1.2 %

Agreement, but shrub has also large coverage

Large land use change in the south, but it seems not to be included in USGS map.

Mixed Vegetation: SKOA

BERMS Old Aspen (53.6N, 106.2W)

Not clear if the mixed vegetation is better for this location in regards to LAI

Dominant vs. Fraction: LAI

Grids with 30-40% deciduous forest may turn into other ecosystem (eg., shrub)

Dominant vs. Fraction: Fluxes

Trees increase the productivity, especially evergreen needle leaf, while grasses reduce the productivity

Calibration/Validation of regional scale GHG flux (scaling problem)

- To understand how the regional (ecosystem or other) flux is related to the concentration? (CO2 or GHG in general)
 - GHG concentration is the interaction between fluxes and atmospheric transport (up scaling of flux)
 - Use GEM to simulate GHG concentration (given the flux)
 - Compare to EC continuous GHG concentration measurements
 - GHG measurements include CO2 and CH4 (ecosystem and anthropogenic)

Environment Canada's Greenhouse Gases Measurements Network

Observed CH₄

Short-term variations might be a indicator of local/regional sources

Modelling concentration in GEM

 To simulate synoptic/short-term variations, we need more high-resolution modeling with 'accurate' transport

- Weather forecast model
- Short time scale Δt =~10 min
- variable resolution
 domain ΔL = ~15 km
- Time invariant fluxes

CH₄ Model vs Obs : 2008 January

Modeled CH₄ with EC & EDGAR

Model vs Obs : Fraserdale

GEM-model appears to capture diurnal and synoptic variability

Model: Bio/FF Partition

SMAP carbon cycle modelling

- Use improved GEM forcing with assimilated SMAP soil moisture and F/T
 - Better soil temperature and moisture could improve soil respiration modelling
- Assimilate MODIS LAI (also GPP/NPP) into ecosystem models
 - Provide more constrain on photosynthesis and plant respiration
- Develop GHG concentration modelling in GEM to evaluate/validate model fluxes regionally
 - Synoptic concentration is the integrated signal from the regional fluxes (ecosystem models, CarbonTracker, SMAP NEE)
- Different ecosystem models (Biome-BGC, CTEM, BEPS ...) useful for a comprehensive GHG data assimilation system
 - Necessary component for a more complete GHG data assimilation model for remote sensing and physical sampling measurements
 - Different ecosystem models provide better uncertainty estimates (Biome-BGC, CTEM, BEPS ...)