Early Results of the SMAP Marena Oklahoma In Situ Sensor Testbed SMAP-MOISST

Michael H. Cosh¹, Tyson Ochsher² and

¹USDA ARS Hydrology And Remote Sensing Laboratory, Beltsville, MD 20705 USA ²Plant And Soil Sciences, Oklahoma State University, Stillwater, OD 74078 USA

Many in situ networks in the world, with a variety of sensors/methods

How do you establish a consistent, quality data record for SMAP cal/val?

Compare and contrast in situ sensors to ground truth data.

Questions:

What are the limitations of these sensors?

What are the errors associated with the measurement?

What types of calibration should be conducted? (there are 2 types)

Moving forward with network development, what are key lessons to keep in mind?

SMAP Marena Oklahoma In Situ Sensor Testbed Testbed Team

- Lead Scientist: Michael Cosh (USDA-ARS-Beltsville)
- Local Lead: Tyson Ochsner (Oklahoma State Univ.), Geano Dong
- Field Managers: Chris Stansberry (OSU) and Lynn McKee (ARS)
- Sensor Leads
 - Base Stations: Michael Cosh
 - COSMOS: Marek Zreda (U.Ariz)
 - o GPS Reflectometers: Eric Small (Colorado) & John Braun (UCAR)
 - CRN: Michael Palecki and John Kochendorfer (NOAA)
 - Passive DTS: Susan Steele-Dunne (Delft Univ.), John Selker (Oregon State), Christine Hatch (Umass Amherst), Chadi Sayde (Oregon State), Nick van de Geisen (Delft Univ.)
 - o TDR: Steve Evett (USDA-ARS-Bushland) and Tyson Ochsner (OSU)
 - Flux: Jeff Basara (Univ. of Oklahoma) and John Prueger (USD-ARS-Ames)

SMAP Marena Oklahoma In Situ Sensor Testbed Site Selection

- Managed by OSU Range Research Station
- Local support from OSU Dept. Plant and Soil Science
- Rangeland/Pasture
- Co-located with Oklahoma Mesonet MARE site
- Two NOAA CRN stations nearby (1 additional installed on site)
- Long Term Access ~ 6 years
- >700 m Domain for COSMOS

SMAP Marena Oklahoma In Situ Sensor Testbed Marena Site Design

- Four Base Installations
- Common depths of 5, 10, 20, 50, 100 cm, with some sampling at 2.5 cm with Hydra.
- Base station sensors
 - Stevens Water Hydra Probes (6)
 - Delta-T Theta Probes (5)
 - Decagon EC-TM probes (5)
 - Sentek EnviroSMART Capacitance Probes (4)
 - Campbell CS615/CS616 TDRs (5)
 - CS 229-L heat dissipation sensors (OK Mesonet) (5)
 - Acclima Sensor (5)

Site A	Site B	Site C	Site D
Base	Base	Base	Base
GPS	ASSH	GPS	GPS
COSMOS	Passive DTS		CRN
ASSH			
TDR systems			
Flux System			

SMAP Marena Oklahoma In Situ Sensor Testbed Site Design Site Design

SMAP Marena Oklahoma In Situ Sensor Testbed Site Design

SMAP Marena Oklahoma In Situ Sensor Testbed Installation Installation

Installation in May 2010

SMAP Marena Oklahoma In Situ Sensor Testbed New Sensors/Networks

COSMOS – COsmic ray Soil Moisture Observing System uses a neutron counting system to measure broken down water molecules as a proxy for moisture at the surface and root zone (~30 cm).

GPS Reflectometry - Using full GPS stations which measure tectonic movement and taking the reflections at the horizon to estimate soil moisture in the foreground.

Passive Distributed Temperature Sensor Systems (PDTS) – Long buried cabling at various depths can estimate on a high spatial scale, the moisture content immediately surrounding the wire.

Sensor Methods Sensor Methods Sensor Methods

SMAP Marena Oklahoma In Situ Sensor Testbed Validation Sampling Campaigns

Monthly Sampling

- Vegetation Collection
- **Gravimetric Sampling**
- Theta Probe Sampling
- **Intensive Observations**
 - High Density Sampling
 - Soil Profiles

SMAP Marena Oklahoma In Situ Sensor Testbed Timeline

- Project Planning begins October 2009
- Installation and deployments
 - Base Stations installed May 2010
 - GPS installed in June 2010
 - COSMOS installed July 2010
 - Passive DTS installed October 2011
 - SMAPVEX11, June 2011, PALS flights/COSMOS rover.
 - Flux Tower installed October 2011
 - NASA Funds received October 2011
 - Burn Study Winter 2012
 - Additional UAVSAR flights October 2012
 - AirMoss Validation October 2012

SMAP Marena Oklahoma In Situ Sensor Testbed Precipitation Record

SMAP Marena Oklahoma In Situ Sensor Testbed Site Design

USDA OS SMAP Marena Oklahoma In Situ Sensor Testbed Calibration and Scaling

Soil Calibration

Every sensor can be calibrated to each specific soil to be installed in.

- Soil specific Calibration, in field or in lab with replication of soil bulk density
- Variety of soil moisture conditions necessary for accurate calibration.

Installation Scaling

Each installation should be scaled to determine how it represents the domain in which it is installed.

- Each installation or set of installations is one data series to be calibrated
- Scaling is against the satellite metric, 0-5 cm gravimetrically based volumetric soil moisture.

SMAP Marena Oklahoma In Situ Sensor Testbed Sensor Calibration

SMAP Marena Oklahoma In Situ Sensor Testbed Calibration Accuracy Calibration Accuracy

Sensor	RMSE Factory Calibration	RMSE Site Calibration	Failure Rate
Theta	0.0300	0.0276	0% (0/20)
Hydra	0.0401	0.0299	0% (0/24)
ECTM(Echo)	0.0811	0.0361	10% (2/20)
CS616	0.0726	0.0626	5% (1/20)
Acclima	0.0796	0.0253	40% (8/20)
Trime	0.0422	0.0233	12.5% (1/6)
CS229	-	-	5% (1/20)
EnviroSMART/ Sentek	-	-	0% (0/16)

RMSE in m³/m³

SMAP Marena Oklahoma In Situ Sensor Testbed Field Scaling

Sensor Calibration is not the final step.

Even is a sensor is calibrated, the installed sensor may be in An unrepresentative location, or have a faulty installation.

SMAP Marena Oklahoma In Situ Sensor Testbed Variability at the Surface 0-5 cm

SMAP Marena Oklahoma In Situ Sensor Testbed CRN 5 cm

SMAP Marena Oklahoma In Situ Sensor Testbed Sites A-D Hydras at 5 cm depth

SMAP Marena Oklahoma In Situ Sensor Testbed CRN Hydras at 100 cm depth

SMAP Marena Oklahoma In Situ Sensor Testbed Uniform conditions in the testbed

SMAP Marena Oklahoma In Situ Sensor Testbed CDFs of Site Averages by Sensor at 5 cm CDFs of Site Averages by Sensor at 5 cm

SMAP Marena Oklahoma In Situ Sensor Testbed CDFs of Site Averages by Sensor at 50 cm

SMAP Marena Oklahoma In Situ Sensor Testbed Some Conclusions

- Installation practices and procedures should be standardized
- Temperature sensors necessary to correct for low temperature errors in soil moisture signals
- Raingage records are important for erroneous readings and troubleshooting.
- Calibration is critical for all sensors.
- Scaling also critical for all sensors.
- Diurnal patterns can be significant for some surface sensors (~4%) depending on temperature range

SMAP Marena Oklahoma In Situ Sensor Testbed What is freezing?

