

SMOS Cal Val A feed back

Yann CNES- Cesbio And the SMOS team

3rd SMAP Cal/Val Workshop November 15th 2012

Frame

- Necessity to carry out a Cal/Val
 - Self obvious
- ☐ The case of SMOS
 - Main points
 - New instrument (2D Interferometry)
 - New measurements
 - Spatial and temporal sampling
 - Past experience
 - ❖ AMSR –E
 - ***** ...
- ☐ Comparisons with other data sets
 - ECMWF (usually too wet)
 - Other satellite data sets
 - ➤ Triple colocation → advantages relative algorithms, detrimental to absolute value retrievals
 - But useful to see how algorithm behaves as a function of location

Calibration

- Need either
 - A large area fully and perfectly known and modelled
 - Does not exist.
 - Spatial Heterogeneity
 - Temporal evolution
 - Or an area homogeneous and temporally very stable
 - Ocean
 - Wind speed, SST
 - Antarctica (dome Concordia)
 - Galactic pole
 - Need manoeuvres
 - Avoid using
 - ❖ Deserts → source of issues (see Walker and Rudiger, and others)
 - Forest not stable (see Ferrazzoli et al)
 - ❖ Greenland → strange behaviours

Vicarious calibration: Simpson Desert

The Murrumbidgee catchment

Level 1c Vali

Polarization	v-pol		h-pol		
Incidence angle	22°	38°	22°	38°	
Bias [K]	8.2	9.0	11.3	11.7	
RMSE [K]	10.8	10.7	12.6	13.6	
(bias corrected)					
RMSE [K]	7.1	5.9	5.5	7.0	

A-1: 7deg (A-1: 21.5de A-1: 38.5de

L-MEB Predictions

IGARSS'12 WE3.9.3 - 25 July 12 - Rüdiger et al.

DOME C

DOME C

SMOS Aquarius

SMOS

Rationale

☐ A/C campaigns

- > Expensive
- One shot
- Have to be prepared in long in advance
- Often without flexibility
 - If rains all the time only wet conditions!
 - ❖ If launch delayed
 - Time required to have access to data
- ☐ Launch date important
 - ➤ scheduled for June but ended up November 2nd → winter in Europe:
 - Frozen soils
 - Little vegetation
 - ❖ → Australia!
- ☐ Ground networks
 - Always available but representativity sometimes questionable as well as QC
 - > Sometimes delay to have access to data

SCAN network

Sometimes ground data not representative of the area

Closest site is not the most representative: Site is forested and surface is nominal

Comparison with site 2143, the surface is 99% nominal but the site is in forested area.

The SMOS approach

- ☐ Rely on good quality validated networks (US watersheds)
 - Worked very well
- ☐ Rely on some ground sites
 - Well known, and monitored
 - With a radiometer
 - Representative or with tools to expand to 50 km resolution
 - Uniform (Dome C)
 - Spatialised (Valencia Anchor Site or Danube Upper Basin)
 - This did not work so well
- ☐ Rely on A/C campaigns
 - > Australia
 - Worked poorly during the commissioning phase (SMOS data access from ESA) but most useful after
 - Europe
 - Not much yield

Soil moisture retrieval validation

Fig 2. Time series over site 2059 with filtering for Percentage of RFI < 30%, SM_DQX < 0.07 and Tau_DQX<0.15.

D. Leroux, T Jackson

Representative of SMAP/ SMOS pixels

Use of Cal Val Teams

□ ESA selection process
□ Covered most of the available Ecosystems / climate
□ Not really funded (only access to data)
□ Disappointing outcome

 ➤ Some very active and efficient
 ➤ Some active but little or no feed back to the project
 ➤ Some no return at all, activity questionable
 □ Users need to know how to use the data!

□ And remember some basics between antenna beam coverage, 3dB beam width and sampling!

180°W

120°W

Different ecosystems and surface conditions (A. Mialon)

D. Leroux, S. Bircher, J. Grant, H. Lawrence, S.K. Tomer, A. Al Bitar, F. Cabot. Ph. Richaume,

60°E

120°E

60°W

Lessons learnt on relying upon cal/val teams

□ One to one relationships
➤ need to interact closely between Satellite retrieval group and ground data team
➤ Ability to analyse and criticise both data asets
□ Utilise reliable collaborations
➤ People who will deliver and interact
□ Have to have man power and common projects
➤ Otherwise not much will come out
□ Collaborating with other satellite cal val teams most efficient (AMSR-E, Aquarius, ...)
□ Access to ground data is never granted!

Choice of metrics

- ☐ Need to relate efficiently ground and satellite (s) data sets
- ☐ Need to see in one all the characteristics:
 - > RMS,
 - Correlation
 - Bias
 - Centred RMS
 - Use of Taylor's diagram
 - > CDF to access quality as a function of position within range

HOBE (SB) bias or mean as colour code

HOBE (SB)

Comparison Soil moisture, Australia (Mialon and Rudiger)

Period → June 2010 - 2011

 L2 V5
 L3 (equivalent V4)
 AMSR-E NSIDC

AMSR-E LPRM algorithm, C band
AMSR-E LPRM algorithm, X band

Conclusions

- ☐ Lessons learnt
 - Plan in advance
 - ➤ Ground data is not "truth" (i.e., error of 8-10% in most cases)
 - > Rely on well designed networks preferably with historical background and track record (to avoid bad experiences)
 - > A/C campaigns very tricky