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Algorithm Theoretical Basis Documents (ATBDs) provide the physical and mathematical 
descriptions of the algorithms used in the generation of science data products. The ATBDs include a 
description of variance and uncertainty estimates and considerations of calibration and validation, 
exception control and diagnostics.  Internal and external data flows are also described.  

 

The SMAP ATBDs were reviewed by a NASA Headquarters review panel in January 2012 and are 
currently at Initial Release, version 1.  The ATBDs will undergo additional updates after the SMAP 
Algorithm Review in September 2013.  
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STATSGO                      State Soil Geographic Database 
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1 INTRODUCTION 

This document is the Algorithm Theoretical Basis Document (ATBD) for the surface soil 
moisture data product for hydrometeorology applications using combined SMAP radar and 
radiometer measurements. The SMAP Level 1 Requirements and Mission Success Criteria 
document specifies the SMAP baseline requirement for soil moisture as: 

4.1.1 Requirement: Baseline Science Mission 
 

a) The baseline science mission shall provide estimates of soil moisture in the top 5 
cm of soil with an error of no greater than 0.04 [m3 m-3] volumetric (one sigma) at 
10 km spatial resolution and 3-day average intervals over the global land area 
excluding regions of snow and ice, frozen ground, mountainous topography, open 
water, urban areas, and vegetation with water content greater than 5 [kg m-2] 
(averaged over the spatial resolution scale); 
 

In order to meet this requirement, the SMAP radar and radiometer measurements need to be 
combined. This document provides the theoretical basis and error analysis on the following data 
products: 

1. Level 2 Soil Moisture (L2_SM_AP) in half orbit format. 
2. Level 3 Soil Moisture (L3_SM_AP) in the form of global daily composites. 

 

1.1 Overview and Background 

The important role of surface soil moisture as a terrestrial hydrology state variable is well 
recognized. Various applications like weather forecasting, climate change prediction, agricultural 
production, water resources management, drought prediction, flood area mapping, and ecosystem 
health monitoring require information on surface soil moisture for skillful modeling and 
forecasting. The outcomes from these applications have direct impact on human society and the 
management of our environment. Therefore, mapping surface soil moisture with sufficient accuracy 
over the required ranges of spatial and temporal scales is imperative to fulfill the needs of these 
applications. 

 
Surface soil moisture can be measured over a range of scales from point scale (in situ) to 

coarse scale at various temporal resolutions. At point scale soil moisture measurements are 
conducted using in situ measurement networks (e.g., SCAN sites and Oklahoma Mesonet in the 
Continental United States) that can have high accuracy but are spatially very sparse. Coarse scale (> 
40 km) soil moisture measurements are obtained from satellite-based footprints using L-, C- and X-
band radiometers (e.g., SMOS, AMSR-E and WindSat) [1-2]. The satellite-based C- and X-band 
radiometers have shallow sensing depth (< 2 cm) and also have significantly reduced sensitivity to 
soil moisture for even small amounts of vegetation, leading to high retrieval errors in soil moisture 
estimates over vegetated regions [1].  Satellite-based C-band radars such as the ERS scatterometer 
also have coarse resolution (~50 km) and have been used to retrieve surface soil moisture over 
sparsely vegetated regions with moderate accuracy. The European Space Agency’s Soil Moisture 
and Ocean Salinity (SMOS) mission launched in December, 2009 is the first wide-swath L-band 
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soil moisture mission, and has the potential for retrieving soil moisture over a much higher range of 
vegetation conditions at a spatial resolution of ~40 km with a sensing depth of ~5 cm [2], 
consequently an improvement over the C-band radiometers of AMSR-E and WindSat.  

 
All these measurement technologies only partially satisfy the required criteria of high 

spatial and temporal resolution, wide spatial coverage, optimal sensing depth and desired accuracy 
in retrieved soil moisture over moderate vegetation conditions. Therefore surface soil moisture 
retrieved using these approaches are not matched suitably for hydrometeorology, ecology, water 
resource management, and agronomy because these applications require high spatial (< 10 km) and 
temporal (< 3 days) resolution soil moisture information. Recognizing the importance of fine spatial 
and temporal resolution surface soil moisture measurements with global coverage, the National 
Research Council’s Committee on Earth Science and Applications from Space recommended the 
implementation of the Soil Moisture Active Passive (SMAP) mission concept based on its impact 
on overall societal benefits and potential scientific advances in the fields of hydrology, meteorology 
and ecology [3]. 

 
 

1.2 The Soil Moisture Active Passive (SMAP) Mission 

1.2.1 Science Objectives  

The National Research Council’s (NRC) Decadal Survey, Earth Science and Applications 
from Space: National Imperatives for the Next Decade and Beyond, was released in 2007 after a 
two year study commissioned by NASA, NOAA, and USGS to provide them with prioritization 
recommendations for space-based Earth observation programs [3].  Factors including scientific 
value, societal benefit and technical maturity of mission concepts were considered as criteria. The 
NRC recommended SMAP data products that have high science value and provide data towards 
improving many natural hazards applications. Furthermore SMAP draws on the significant design 
and risk-reduction heritage of the Hydrosphere State (Hydros) mission [4]. For these reasons, the 
NRC report placed SMAP in the first tier of missions in its survey. In 2008 NASA announced the 
formation of the SMAP project as a joint effort of NASA’s Jet Propulsion Laboratory (JPL) and 
Goddard Space Flight Center (GSFC), with project management responsibilities at JPL. The target 
launch date is late 2014 [5].  

The SMAP science and applications objectives are to: 

• Understand processes that link the terrestrial water, energy and carbon cycles; 
• Estimate global water and energy fluxes at the land surface; 
• Quantify net carbon flux in boreal landscapes; 
• Enhance weather and climate forecast skill; 
• Develop improved flood prediction and drought monitoring capability. 

 

1.2.2 Measurement Approach 

Table 1 is a summary of the SMAP instrument functional requirements derived from its 
science measurement needs. The goal is to combine the attributes of the radar and radiometer 
observations (in terms of their spatial resolution and sensitivity to soil moisture, surface roughness, 
and vegetation) to estimate soil moisture at a resolution of 10 km, and freeze-thaw state at a 
resolution of 1-3 km. 
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The SMAP instrument incorporates an L-band radar and an L-band radiometer that share a 

single feedhorn and parabolic mesh reflector. As shown in Figure 1, the reflector is offset from 
nadir and rotates about the nadir axis at 14.6 rpm (nominal), providing a conically scanning antenna 
beam with a surface incidence angle of approximately 40°. The provision of constant incidence 
angle across the swath simplifies the data processing and enables accurate repeat-pass estimation of 
soil moisture and freeze/thaw change. The reflector has a diameter of 6 m, providing a radiometer 3 
dB antenna footprint of 40 km (root-ellipsoidal-area). The real-aperture radar footprint is 30 km, 
defined by the two-way antenna beamwidth. The real-aperture radar and radiometer data will be 
collected globally during both ascending and descending passes.  

 
To obtain the desired high spatial resolution the radar employs range and Doppler 

discrimination. The radar data can be processed to yield resolution enhancement to 1-3 km spatial 
resolution over the 70% outer parts of the 1000 km swath. Data volume prohibits the downlink of 
the entire radar data acquisition.  Radar measurements that allow high-resolution processing will be 
collected during the morning overpass over all land regions and extending one swath width over the 
surrounding oceans.  During the evening overpass data poleward of 45° N will be collected and 
processed as well to support robust detection of landscape freeze/thaw transitions. 

 
The baseline orbit parameters are: 

 Orbit Altitude: 685 km (2-3 days average revisit and 8-days exact repeat) 
 Inclination: 98 degrees, sun-synchronous 
 Local Time of Ascending Node: 6 pm 

 
Table 1. SMAP Mission Requirements 

Scientific Measurement Requirements Instrument Functional Requirements 
Soil Moisture: 
~±0.04 m3m-3 volumetric accuracy(1-sigma)  in 
the top 5 cm for vegetation water content ≤ 5 kg 
m-2; 
Hydrometeorology at ~10 km resolution; 
Hydroclimatology at ~40 km resolution 

L-Band Radiometer (1.41 GHz): 
Polarization: V, H, T3 and T4 
Resolution: 40 km 
Radiometric Uncertainty*: 1.3 K 
L-Band Radar (1.26 and 1.29 GHz): 
Polarization: VV, HH, HV (or VH) 
Resolution: 10 km 
Relative accuracy*: 0.5 dB (VV and HH) 
Constant incidence angle** between 35° and 
50° 

Freeze/Thaw State: 
Capture freeze/thaw state transitions in integrated 
vegetation-soil continuum with two-day precision, 
at the spatial scale of land-scape variability (~3 
km). 

L-Band Radar (1.26 GHz and 1.29 GHz):   
Polarization: HH 
Resolution: 3 km 
Relative accuracy*: 0.7 dB (1 dB per channel 
if 2 channels are used) 
Constant incidence angle** between 35° and 
50° 

Sample diurnal cycle at consistent time of day 
(6am/6pm Equator crossing); 
Global, ~3 day (or better) revisit; 
Boreal, ~2 day (or better) revisit 

Swath Width: ~1000 km 
 
Minimize Faraday rotation (degradation factor 
at L-band) 

Observation over minimum of three annual cycles Baseline three-year mission life 
* Includes precision and calibration stability     
** Defined without regard to local topographic variation 
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The SMAP radiometer measures the four Stokes parameters, V, H and T3, and T4 at 1.41 

GHz.  The T3-channel measurement can be used to correct for possible Faraday rotation caused by 
the ionosphere, although such Faraday rotation is minimized by the selection of the 6am/6pm sun-
synchronous SMAP orbit.   

 
At L-band anthropogenic Radio Frequency Interference (RFI), principally from ground-

based surveillance radars, can contaminate both radar and radiometer measurements. Early 
measurements and results from the SMOS mission indicate that in some regions RFI is present and 
detectable. The SMAP radar and radiometer electronics and algorithms have been designed to 
include features to mitigate the effects of RFI. To combat this, the SMAP radar utilizes selective 
filters and an adjustable carrier frequency in order to tune to pre-determined RFI-free portions of 
the spectrum while on orbit. The SMAP radiometer will implement a combination of time and 
frequency diversity, kurtosis detection, and use of T4 thresholds to detect and where possible 
mitigate RFI.   

 
The SMAP planned data products are listed in Table 2. Level 1B and 1C data products are 
calibrated and geolocated instrument measurements of surface radar backscatter cross-section and 
brightness temperatures derived from antenna temperatures. Level 2 products are geophysical 
retrievals of soil moisture on a fixed Earth grid based on Level 1 products and ancillary 
information; the Level 2 products are output on half-orbit basis. Level 3 products are daily 
composites of Level 2 surface soil moisture and freeze/thaw state data. Level 4 products are model-
derived value-added data products that support key SMAP applications and more directly address 
the driving science questions.  
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Figure 1: The SMAP observatory is a dedicated spacecraft with a rotating 6-m light-weight 
deployable mesh reflector. The radar and radiometer share a common feed. 

 
 
 
 

Table 2. SMAP Data Products Table. 

 
 

1.3 Product Objectives 

SMAP radiometer measurements in the L-band frequency range are sensitive to surface 
(~0-5 cm) soil moisture, but with the SMAP 6 m reflector antenna, the effective ground resolution 
is about 40 km. Using the same antenna system but with synthetic aperture radar (SAR) processing, 
the SMAP L-band radar provides higher resolution (~3 km) backscatter measurements. The high 
resolution advantage of radar is diminished for soil moisture sensing by the higher sensitivity of 
radar to surface roughness and vegetation scattering.  

Soil moisture variations lead to a dynamic range in brightness temperature that can be tens 
of degrees Kelvin [6].  The SMAP radiometer can map the surface to within a few degrees of 
Kelvin accuracy. Soil moisture variations cause only about 5 to 10 dB range in the SMAP radar 
backscatter cross-section [7]. With a typical instrument sensitivity of about 1 dB, this leads to 
relatively less soil moisture sensitivity for the instrument. Furthermore the presence of a vegetation 
canopy reduces the dynamic range of radar backscatter cross-section faster than radiometer 
brightness temperature.  

 
For the above reasons, neither the SMAP radiometer nor the radar can individually meet the 

SMAP Level 1 requirements for soil moisture spatial resolution (10 km) and accuracy (0.04 
cm3/cm3). This ATBD proposes baseline and option algorithms that overcome these limitations by 



  11 

merging the active (radar) and passive (radiometer) measurements to derive a 9 km soil moisture 
product L2_SM_AP that meets the SMAP Level 1 requirements.   

 
Relative to one another, the SMAP radiometer brightness temperature measurements are 

coarser resolution but with higher sensitivity to soil moisture and the SMAP radar backscatter cross-
section measurements are higher resolution but with somewhat reduced sensitivity to soil moisture 
especially over densely vegetated land surfaces.  The L2_SM_AP soil moisture product merges the 
two measurements to produce soil moisture retrieval with intermediate resolution that meets the 
Level 1 requirements. 

 
The baseline suite of products from the SMAP mission is shown in Table 2. The Level 2 

radiometer-only soil moisture product (L2_SM_P) is derived principally from the brightness 
temperature product (L1B_TB).  This data product L2_SM_P is posted on a 36 km Earth fixed grid. 
The L2_SM_P product also includes a land brightness temperature estimate that is corrected for 
water bodies within the 36 km. This brightness temperature is available through a ‘pipe-bend’ 
during the production of the L2_SM_P processing. This water-body corrected brightness 
temperature is an input for the L2_SM_AP data processing. 

 
The radar-only soil moisture (L2_SM_A) is a fine-resolution (3 km) soil moisture estimate 

derived from the Hi-Res radar backscatter data (L1C_S0_HiRes).  The L2_SM_A data product is 
unlikely to meet the L1 accuracy requirements, although soil moisture information is expected to be 
achieved at a reduced accuracy, but at higher resolution. The L2_SM_A produces radar backscatter 
cross-section values aggregated to 3 km during the early stages of its processing. Through another 
‘pipe-bend’ this data set along with water body and freeze/thaw flags are made available to the 
L2_SM_AP data processing as input. 

 
The data product L2_SM_AP is posted on a 9 km EASE grid that is nested consistently 

with the 36 km brightness temperature and 3 km radar backscatter cross-section data sets (see 
Figure 2 and its discussion in Section 3.1).  

1.4 Historical Perspective 

In the past, numerous studies [8, 9, 10, 11] have attempted to obtain high resolution soil 
moisture by downscaling coarse resolution (~50 km) soil moisture products from satellite-based 
microwave radiometers. These studies used fine scale ancillary geophysical information like 
topography, vegetation, soil type, and precipitation that exert physical control over the evolution of 
soil moisture. High resolution thermal infra red data from MODIS and soil parameters were utilized 
in a deterministic approach to disaggregate SMOS ~40 km soil moisture product to ~10 km soil 
moisture estimate [12]. From all these approaches, one common aspect is the use of static and 
dynamic ancillary geophysical data in the downscaling/disaggregation approaches. The ancillary 
geophysical data come from different sources with inherent systematic and unsystematic errors, as 
well as registration mismatches that affect the accuracy of the downscaled soil moisture estimates. 
Also, the physics of interactions between soil moisture and some geophysical parameters at 
different scales is not well understood.  

 
Few studies have been conducted to merge high resolution radar and coarse resolution 

radiometer measurements in order to obtain an intermediate resolution product. Change detection 
techniques have demonstrated potential to monitor temporal evolution of soil moisture by taking 
advantage of the approximately linear dependence of radar backscatter and brightness temperature 
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change on soil moisture change. The feasibility of a change detection approach using the Passive 
and Active L-band System airborne sensor (PALS) radar and radiometer data obtained during the 
SGP99 campaign is presented in [13]; a similar approach is used to downscale PALS data using 
AIRSAR data from the SMEX02 campaign. The limitation of this technique is the estimation of soil 
moisture relative change and not the absolute value of soil moisture; errors also accumulate over 
time. A totally different approach is presented in [14], where a Bayesian method is used to 
downscale radiometer observations using radar measurements. Kim et al [15] developed a time-
series algorithm based on a linear model of backscatter and soil moisture. For estimating soil 
moisture at intermediate resolution (9 km), they determine the two unknowns of the linear model 
for each pixel within the coarse radiometer pixel. Piles et al. [16] presented a change detection 
scheme within an SMAP-like context that uses the approximately linear dependence of change in 
radar backscatter to soil moisture change at radiometer resolution, temporal change in backscatter at 
radar resolution and previous day soil moisture data to estimate soil moisture at ~9 km. Like [13] 
this approach also suffers from accumulation of errors over time. A spatial variability technique 
developed by [17] to blend SMAP radar measurement and radiometer-based soil moisture data also 
takes advantage of approximately linear dependence of backscatter change to soil moisture change 
at the radiometer resolution which constraints the relative backscatter difference within the coarse 
radiometer footprint to estimate soil moisture at  ~9 km resolution. Unlike [13] and [15], the spatial 
variability technique used in [17] does not require the previous satellite overpass observations to 
estimate the current soil moisture value. A new active-passive algorithm is developed by [18] that 
draws from all the above algorithms and techniques ([13], [15], [16], and [17]). The new active-
passive algorithm [18] downscales the coarse-scale radiometer-based gridded brightness 
temperature using the fine resolution radar backscatter, and then near surface soil moisture is 
retrieved from the downscaled brightness temperature. The algorithm presented by [18] is the 
current baseline L2_SM_AP algorithm, and is discussed in Section 3 in detail.      

 
 

1.5 Product Characteristics 

The L2_SM_AP product is based on the merger of the SMAP radiometer and radar 
instrument products at two discrete grid resolutions i.e., 36 km and 3 km, respectively. The Equal-
Area-Scalable-Earth (EASE) grid cells of the radiometer and radar products nest perfectly (refer 
L2_SM_P ATBD), and therefore L2_SM_AP 9 km soil moisture product have 16:1 and 1:9 
correspondence with the radiometer and radar products, respectively. The grid definition used in the 
algorithms is illustrated in Fig. 2. The baseline and optional algorithms disaggregate the coarse 
resolution radiometer brightness temperature product based on the spatial variation in high 
resolution radar backscatter. In addition, the algorithms require static and dynamic ancillary data. 
These ancillary data are resampled to the same EASE grid prior to ingestion in the L2_SM_AP 
processing. The dynamic ancillary data used to retrieve soil moisture for a particular 9 km grid cell 
at a specific point in time will be listed in the SMAP L2_SM_AP and L3_SM_AP output files for 
the benefit of end users. 
 
 

1.6 Document Outline 

This document contains the following sections: Section 2 describes the basic physics of 
combining passive microwave and active microwave remote sensing at L-band; Section 3 provides 
description and formulation of the L2_SM_AP baseline and option retrieval algorithms; Section 4 
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presents the results from the tests conducted and the error budget for the L2_SM_AP baseline 
algorithm; Section 5 discusses the practical consideration for implementing the baseline algorithm 
and generating the L2_SM_AP product; Section 6 provides the product specifications table; Section 
7 provides a list of references; Section 8 is the glossary (under development). This ATBD will be 
updated as additional work is completed during the pre- and post-launch periods. 

 

2  PHYSICS OF THE PROBLEM 

The L2_SM_AP baseline algorithm is essentially focused on the disaggregation of the 
radiometer brightness temperature using the radar backscatter spatial patterns within the radiometer 
footprint that are inferred from the radar measurements. The spatial patterns need to account for the 
different levels of radar backscatter cross-section sensitivity to soil moisture owing to the variability 
in the density of vegetation cover.  For this reason the radar measurements within the radiometer 
footprint are scaled by parameters that are derived from the temporal fluctuations in the radar and 
radiometer measurements. Because SMAP makes coincident and constant look-angle radar and 
radiometer measurements, the co-variations over specified (short relative to plant phenology) 
periods of time are mostly related to surface soil moisture changes rather than contributions of 
vegetation and surface roughness. The latter two factors change gradually over long time-periods 
such as monthly/seasonally. 

 
Once the disaggregated brightness temperature at 9 km is produced, the brightness 

temperature inverse algorithms developed for the L2_SM_P product are then applied with ancillary 
information at 9 km to produce the L2_SM_AP product.  

 
The basis for the brightness temperature disaggregation based on radar measurements 

begins with relating the radiometer measurements with the radar backscatter cross-section 
measurements in a simple conceptual framework outlined in this section. This analysis is meant to 
simply demonstrate the dependencies and it is not directly (i.e., algebraically) part of the baseline 
L2_SM_AP algorithm formulation. 

 
The brightness temperature at polarization p and its dependency on surface characteristics 

may be demonstrated using the  model (refer to the SMAP ATBD: L2 & L3 Radiometer Soil 
Moisture (Passive) Products. SMAP Project, JPL D-66480, Jet Propulsion Laboratory): 
 
𝑇!! = 𝑇!  .    𝑒!!!/!"#! ∙ 𝑒! + 𝑇! ∙ 1 − 𝜔 ∙ 1 − 𝑒!!!/!"#$ ∙ 1 + 𝑟! ∙ 𝑒!!!/!"#!   (1) 
 
where Ts is the soil effective temperature, Tc is the vegetation temperature, τp is the nadir vegetation 
opacity, ωp is the vegetation single scattering albedo, and rp is the soil reflectivity [6]. 
 

At the morning nodal crossing overpass isothermal near subsurface-to-surface-canopy 
thermal conditions are expected so that 𝑇! ≈ 𝑇! ≡ 𝑇. Under low vegetation cover conditions the 
single-scattering albedo can be neglected so that  𝜔 ≪ 1. The polarized emissivity and reflectivity 
are related by 𝑒! = 1 − 𝑟!. Using these assumptions and identities, (1) becomes simply: 
 

𝑇!! = 𝑇 1 − 𝑟! ∙ 𝑒!!!!/!"#$       (2) 
 

ωτ −
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The surface reflectivity can be decomposed into a component for smooth surfaces 𝑟!! corrected for 
roughness as in 𝑟! = 𝑟!!𝑒

!! where h is roughness parameter related to the root-mean-square (RMS) 
of surface roughness. Now (2) becomes: 
 
 𝑇!! = 𝑇 ∙ 1 − 𝑟!! ∙ 𝑒

!! ∙ 𝑒!!!!/!"#$                                   (3) 
 
The radar backscatter cross-section for co-polarization pp is: 
 
 𝜎!!! = 𝜎!!∙

!"#$𝑒!!!!/!"#$ + 𝜎!!!"# + 𝜎!!!"#      (4) 
 
The first term is the surface backscatter, 𝜎!!

!"#$, modified by the two-way attenuation through a 
vegetation layer of nadir opacity τp. The second term represents the backscatter from the vegetation 
volume, 𝜎!!!"!. The third term represents interactions between vegetation and the soil surface, 𝜎!!!"#. 
 

From the empirical models presented in [19] and [20], the surface contribution 𝜎!!
!"#$ is 

conceptualized as the product of polarization magnitude 𝛼!!
!

 and surface roughness 
characteristics as captured in a function 𝑓! 𝑟𝑜𝑢𝑔ℎ𝑛𝑒𝑠𝑠  as in: 
 
 𝜎!!

!"#$ = 𝑓! 𝑟𝑜𝑢𝑔ℎ𝑛𝑒𝑠𝑠 ∙ 𝛼!!
!
      (5) 

 
The polarization magnitude 𝛼!!

!
 is a function of soil dielectric properties and incidence angle.  It 

is related to the soil reflectivity 𝑟!! in the horizontal co-polarization if the center-frequency of the 
radar and radiometer are close. In the vertical co-polarization, the polarization magnitude and soil 
reflectivity are near-linearly proportional but not equivalent. Given the proportionality 𝛼!!

! ∝ 𝑟!!, 
the linear coefficients of the relationship may be absorbed in the empirical function 𝑓! 𝑟𝑜𝑢𝑔ℎ𝑛𝑒𝑠𝑠  
so that: 
 
 𝜎!!

!"#$ = 𝑓! 𝑟𝑜𝑢𝑔ℎ𝑛𝑒𝑠𝑠 ∙ 𝑟!!       (6) 
 
The interaction term 𝜎!!!"#  is a complex function of vegetation properties, soil roughness 
characteristics as well as surface reflectivity.  The interaction term may be written as: 
 
 𝜎!!!"# = 𝑓! 𝑟𝑜𝑢𝑔ℎ𝑛𝑒𝑠𝑠, 𝑣𝑒𝑔𝑒𝑡𝑎𝑡𝑖𝑜𝑛 ∙ 𝑟!!     (7) 
 
using a function 𝑓! 𝑟𝑜𝑢𝑔ℎ𝑛𝑒𝑠𝑠, 𝑣𝑒𝑔𝑒𝑡𝑎𝑡𝑖𝑜𝑛  that depends on surface roughness and vegetation in 
complex ways.  The vegetation volume scattering 𝜎!!!"#  is a complex function of vegetation alone 
through a third function 𝑓! 𝑣𝑒𝑔𝑒𝑡𝑎𝑡𝑖𝑜𝑛  as in: 
  
 𝜎!!!"# = 𝑓! 𝑣𝑒𝑔𝑒𝑡𝑎𝑡𝑖𝑜𝑛         (8) 
 
Now the radar backscatter cross-section for co-polarization pp is: 
 
 𝜎!!! = 
               𝑓! 𝑟𝑜𝑢𝑔ℎ𝑛𝑒𝑠𝑠 ∙ 𝑟!! ∙ 𝑒

!!!!/!"#$ 
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             +𝑓! 𝑟𝑜𝑢𝑔ℎ𝑛𝑒𝑠𝑠, 𝑣𝑒𝑔𝑒𝑡𝑎𝑡𝑖𝑜𝑛 ∙ 𝑟!! 
             +𝑓! 𝑣𝑒𝑔𝑒𝑡𝑎𝑡𝑖𝑜𝑛  
 
Solve for 𝑟!!: 
 
 𝑟!! =

!
!!∙!!!!!/!"#$!!!

∙ (𝜎!!! − 𝑓!)      (9) 

 
The dependencies of the functions 𝑓!, 𝑓! and 𝑓! are not carried forward in order to simplify the 
notation in (9).  They depend on surface roughness, vegetation characteristics and incidence angle 
in complex ways.  Owing to the conical scan strategy adopted by SMAP, they are, however, not 
dependent on incidence angle which is usually a confounding factor in radar backscatter modeling 
and retrievals.  
 
Substituting (9) into (3) yields: 
 

 𝑇!! = 𝑇 1 − !!!!!!!!/!"#$

!!∙!!!!!/!"#$!!!
∙ (𝜎!!! − 𝑓!)       

 
or: 
 

 
!!!
!
= 1 + !!!!!!!!/!"#$

!!∙!!!!!/!"#$!!!
∗ 𝑓! + − !!!!!!!!/!"#$

!!∙!!!!!/!!"#!!!
     ∙ 𝜎!!   (10) 

 
which suggests a linear functional dependence of brightness temperature and radar backscatter 

cross-section in the presence of vegetation canopy. The slope 𝛽 ≡ − !!!!!!!!/!"#$

!!∙!!!!!/!"!"!!!
 and intercept 

𝛼 ≡ 1 + !!!!!!!!/!"#$

!!∙!!!!!/!"#$!!!
∗ 𝑓!  are dependent on vegetation, surface roughness characteristics, and 

viewing angle.   
 
 

3 RETRIEVAL ALGORITHM 

3.1 Grid Definition 

Figure 2 shows the nested grid topology of the EASE grid radiometer brightness 
temperature (36 km), EASE grid radar backscatter cross-section (3 km), and desired merged active-
passive L2_SM_AP (9 km) products.  For convenience in mathematical formulation, the naming 
convention of ‘C’ (coarse), ‘F’ (fine), and ‘M’ (medium) for the L1B_TB/L2_SM_P, 
L1C_S0_HiRes, and L2_SM_AP grid scales, respectively, is used throughout the following sections. 
It is evident from the grid topology (Fig. 2) that within a single (nc = 1) 36 km x 36 km grid cell of 
C there are nm = 16 grid cells of M and nf = 144 grid cells of F. Radar backscatter cross-section at 
coarse resolutions (M and C) are obtained by aggregating fine resolution radar backscatter cross-
section in power. 
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Figure 2: Grid definition of radiometer, radar, and merge product where nf and nm are the number 
of area pixels of radar and merged product, respectively, within one radiometer area pixel nc. 
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3.2 Formulation of Baseline L2_SM_AP Algorithm 

The SMAP L-band radiometer will measure the natural microwave emission in the form of 
the brightness temperature (𝑇!!) of the land surface, while the L-band radar will measure the energy 
backscattered (𝜎!!) from the land surface after transmission of an electromagnetic pulse. With 
concurrent SMAP radiometer and radar data and the SMAP constant look angle measurement 
approach over a particular region on the Earth, the influence of azimuthal and viewing-angle 
dependent factors are minimized. Over a short period of time, the increase of surface soil moisture 
or soil dielectric constant will lead to a decrease in radiometer TB [6] and an increase in radar σ [7] 
measurements, and vice-versa. During this short time period TB and σ are negatively correlated due 
to soil moisture variations in time. The time period is generally shorter than seasonal phenology of 
vegetation.  

The land surface vegetation and surface roughness factors vary on time scales longer that 
those associated with soil moisture. It should be noted that in some agricultural landuse regions the 
vegetation can grow and change attributes rapidly over a few days that may be a source of error. 
Also, precipitation and associated surface disturbances can change the soil roughness characteristics 
that may introduce another source of error. Despite these sources of uncertainty, within this region 
of interest over a short period of time the SMAP measured 𝑇!! and 𝜎!! are expected to have a 
functional relationship, which based on (10) is likely a linear functional relationship: 
 
𝑇!!   =   𝛼   +     𝛽   ∙   𝜎!!                      (11) 
 
The unknown parameters α and β are dependent on the dominant vegetation and soil roughness 
characteristics (see discussion following Equation 10). The linear dependence in (11) is based on 
units of power for the radar backscatter cross-section. However, the linear functional relationship 
also holds when 𝜎!! is expressed in decibel (dB), and is shown using the PALS data in upcoming 
sections. The TB polarization can either be v or h and the σ polarization is either vv or hh. Equation 
(1) evaluated at scale C (36 km) is: 
 
𝑇!! 𝐶 = 𝛼 𝐶 + 𝛽 𝐶 ∙ 𝜎!! 𝐶                                (12) 
 
Here 𝜎!! 𝐶   =   !

!"
   𝜎!! 𝐹!

!"
!!! , where F = 3 km grid resolution and nf is the number of F grid cell 

within C (Fig. 2). The parameter β(C) can be statistically estimated based on the time-series 
regression in (12), i.e. pairs of SMAP radiometer 𝑇!! 𝐶   and spatially-averaged radar data 𝜎!! 𝐶  
from successive overpasses over the same Earth grid are used in the statistical linear time-series 
regression 𝑇!! 𝐶 = 𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡 + 𝑠𝑙𝑜𝑝𝑒 ∙ 𝜎!! 𝐶 . Clearly these parameters are effective across 
scale C.                 
 

As a test of robustness of the assumption of linear functional relationship (12) between 
brightness temperature and radar backscatter cross-section, data from PALS taken during the Soil 
Moisture Experiment 2002 (SMEX02) are used to show the strength of linear functional 
dependence (i.e., R2) between the time-series of 𝑇!! K (4 km) and 𝜎!! dB (4 km) specific to a 
particular location or coarse radiometer pixel (Fig. 3). The lower panel of Fig. 3 shows that the 
explained variance (high R2) of the linear approximation 𝑇!! =   𝛼 +   𝛽.𝜎!! is between 65% and 
93% for the SMEX02 PALS observations. There were only 8 days of PALS flights during SMEX02 
and in some locations within the larger flight domain inadequate soil moisture changes occurred. 
The R2 are slightly lower for the middle region of the PALS domain (Fig. 3) because this region 
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does not experience enough transition or dynamic range in surface soil moisture conditions as 
compared to the remainder of the PALS domain.  

 
Another test is shown in Fig. 4 to emphasize the linear functional relationship between 𝑇!! 

800 m and 𝜎!! 800 m using the SMEX02 PALS data. Pairs of 𝑇!! and 𝜎!! are binned based on 
Radar-Vegetation-Index (RVI1) for the entire PALS data of the SMEX02 campaign. Irrespective of 
spatial context, the scatter plots of Fig. 4 illustrate near linear trend between 𝑇!! and 𝜎!! for all the 
range of RVI except for heavily vegetated regions (RVI: 0.8 – 1).  The parameter β that indicates 
backscatter change sensitivity to brightness temperature change is confirmed to be highly dependent 
on vegetation characteristics. Values of β for different classes of RVI show that dense vegetation 
cover masks the soil moisture sensitivity (β approaches near zero for RVI approaching unity). 
Across low vegetation cover regions (low RVI), the changes in radiometer brightness temperature 
are also reflected in changes in radar backscatter, leading to large (negative) values of the 
statistically-estimated β. 
 

 
 
 
 
 
 
 
 
 
 
 
 
________________________________________________________________________________ 
1The RVI is defined as 
 

RVI =    !∗!!!
!!!!  !!!!  !∗!!!

        
 
where the radar backscatter values in units of power [15]. RVI is an index that is directly 
proportional to the amount of vegetation on the land surface. It can be derived directly from SMAP 
radar measurements. When the vegetation cover is dense and there is complete volume scattering 
from the vegetation canopy. For complete volume scattering  𝜎!! =   𝜎!! = 3  .𝜎!! , therefore it 
makes RVI reach the upper limit of unity. For bare smooth surfaces, the cross-pol radar backscatter 
cross-section is insensitive to soil moisture and is much smaller than the co-pol values. This leads to 
a near-zero RVI. Conveniently, the RVI has a dynamic range between zero and unity.  
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Figure 3:  Gridded SMEX02 PALS L-band radiometer 𝑇!!at ~4 km resolution and radar 𝜎!! at 
~800 m resolution for eight days are shown in the top two panels. The lower panel shows the 
explained-variance or R2 between the spatially-aggregated (~4 km) 𝑇!! and 𝜎!!. 
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Figure 4: Scatter plots of SMEX02 𝑇!! K and 𝜎!! dB anomalies categorized based on range of RVI. 
 
 

To further confirm the fidelity of the linear functional relationship between 𝑇!! and 𝜎!! for 
different hydroclimatic regions and various landcovers, PALS data from multiple field campaigns 
(SGP99, SMEX02, CLASIC, and SMAPVEX08) are consolidated and analyzed. During 
consolidation, campaign-average values of 𝑇!! and 𝜎!!  are removed to eliminate campaign-to-
campaign variations in PALS instrument and data processing calibration biases. Correlations 
between different combinations of 𝑇!! and 𝜎!! are then computed. The results are binned based on 
Radar-Vegetation-Index (RVI), and are shown in Fig. 5. Given the SMAP instrument design, 
various combinations of 𝑇!!  and 𝜎!!   are possible for the development of the active-passive 
algorithm. From Fig. 5, it is apparent that the linear functional dependence between 𝑇!! and 𝜎!! 
exhibits the highest correlation, and therefore is a preferable combination considered for the 
proposed active-passive algorithm. Nonetheless further testing of the polarization choices will be 
carried out during prelaunch phase based on expected airborne data and simulated datasets. 
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Figure 5: Correlations between different combinations of 𝑇!! and 𝜎!! evaluated from PALS data 
taken over four field experiments. 
 
The slopes (β) of (11) and standard error in β are also estimated from the consolidated PALS data 
(SGP99, SMEX02, CLASIC, and SMAPVEX08) for different landcover classes (Fig. 6 and Fig 7). 
The trends of β for all the landcover classes are similar, and the systematic progression in 
magnitude of β with respect to RVI follows the basic understanding of relationship between 𝑇!! and 
𝜎!!. The slope between brightness temperature and radar backscatter changes over time is negative 
in sign and the magnitude decreases for denser vegetation conditions. Figure 6 also highlights the 
differences in β due to vegetation types and for different stages of vegetation phenology. High 
standard errors are observed at RVI value of 0.1 because of low counts of 𝑇!! and 𝜎!! datasets.  
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Figure 6: β estimates from consolidated PALS data taken over four field experiments (SGP99, 
SMEX02, CLASIC, SMAPVEX08)  for different landcover.  
 
 

 
Figure 7: Standard errors in estimated β for different landcovers with respect to RVI. 



  23 

The statistically-estimated slope parameter β(C) in (12) (when based on SMAP 
measurements) is specific for a given location. This is because β(C) is a sensitivity parameter 
relating 𝑇!!(𝐶) and 𝜎!! 𝐶  and it is a function of surface characteristics like the local vegetation 
cover and soil roughness for a particular period of time. The parameter varies seasonally as well as 
geographically depending upon landcover. Therefore the time-series pairs of  𝑇!!(𝐶) and 𝜎!! 𝐶  
used for a location in the regression span a moving-window period over which vegetation 
phenology and surface characteristics can be considered constant. The length of the temporal 
window is discussed in next section.  

 
To develop the satellite-based active-passive algorithm further, (11) can also be 

conceptually evaluated at the scale M (9 km) within the radiometer footprint C:   
 
𝑇!! 𝑀! = 𝛼 𝑀! + 𝛽 𝑀! ∙ 𝜎!! 𝑀!          (13) 
 
where 𝜎!! 𝑀!   =   𝜎!! 𝐹!

!"!
!!!  obtained from the SMAP high resolution (3 km) radar data product.  

 
Here 𝑇!! 𝑀!  is the unknown brightness temperature at scale 𝑀!. This scale brightness 

temperature is not available given the SMAP radiometer instrument resolution. In fact this variable 
is the target of the algorithm and it is referred to as the disaggregated brightness temperature.  
 

The first step in developing the algorithm is to subtract (12) from (13): 
 
𝑇!! 𝑀! −   𝑇!! 𝐶 = 𝛼 𝑀! − 𝛼 𝐶    + 𝛽 𝑀! ∙ 𝜎!! 𝑀! − 𝛽 𝐶 ∙ 𝜎!! 𝐶       (14) 
 
Because 𝑇!! 𝑀!   is not available, we cannot estimate the parameters 𝛼 𝑀!  and 𝛽 𝑀!  in the 
manner that was followed at scale C. The path forward to incorporate the effects of the variations of 
these parameters at scale 𝑀! with respect to the coarser scale 𝐶 begins with algebraically rewriting 
(14) as 
 
  𝑇!! 𝑀!  
  = 𝑇!! 𝐶 +        RHS Term I 
  𝛽 𝐶 ∙ 𝜎!! 𝑀! − 𝜎!! 𝐶         RHS Term II 
  + 𝛼 𝑀! − 𝛼 𝐶 + 𝛽 𝑀! − 𝛽 𝐶 ∙ 𝜎!! 𝑀!  RHS Term III      (15) 
 
 
The left-hand-side of (15) is the target variable of the active-passive algorithm, i.e. the 
disaggregated brightness temperature at the 9 km scale 𝑀!.  
 

The first term on the right-hand-side (RHS Term I),  𝑇!! 𝐶 , is the radiometer-measured 
brightness temperature at 36 km or scale 𝐶. This is the brightness temperature corrected for water 
body contributions that is produced during the L2_SM_P processing and it is primarily based on the 
radiometer measurement. 

 
The RHS Term II, 𝛽 𝐶 ∙ 𝜎!! 𝑀! − 𝜎!! 𝐶 , can be calculated based on the regression 

parameter 𝛽 𝐶  that is estimated through the time-series of radiometer brightness temperature 
measurements and radar measurements aggregated to scale 𝐶. The remainder of this second RHS 
term ( 𝜎!! 𝑀! − 𝜎!! 𝐶 ) is also based on the radar measurements aggregated to scales 𝑀! and 𝐶.  
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The RHS Term III accounts for the deviations of the parameters α and β within the grid 

cell 𝐶 . The term 𝛼 𝑀! − 𝛼 𝐶 + 𝛽 𝑀! − 𝛽 𝐶 ∙ 𝜎!! 𝑀!  is in units of brightness 
temperature and represents subgrid scale (relative to C) heterogeneity effects. The parameters α and 
β depend on vegetation and surface roughness. For a perfectly homogeneous region, the parameters 
𝛼 𝑀! = 𝛼 𝐶  and 𝛽 𝑀! = 𝛽 𝐶 , and the subgrid heterogeneity term becomes zero. However, in 
nature homogeneity within C rarely exists. 
 

The SMAP radar also provides high-resolution cross-polarization radar backscatter 
measurements at scale F which are principally sensitive to vegetation and surface characteristics, in 
other words SMAP radar captures the subgrid heterogeneity within scale C. The subgrid 
deviation/heterogeneity patterns in vegetation and roughness as captured by the cross-polarization 
backscatter at scale 𝑀! is 𝜎!" 𝐶 − 𝜎!" 𝑀! . This indicator can be converted to variations in co-

polarization backscatter through multiplications by a sensitivity parameter 
!!!! !!

!!!" !! !
. This 

sensitivity, denoted by the scale 𝐶 variable 𝛤 ≡ !!!! !!

!!!" !! !
, is specific to the particular grid cell 𝐶 

and the particular season for grid cell 𝐶. It is estimated based on the collection of co-polarization 
and cross-polarization radar backscatter cross-section within each grid cell 𝐶. 
 

Consolidated PALS data are used to test the strength of relationship between the co-
polarization and cross-polarization backscatter. Significant correlation is observed between the co-
pol and cross-pol backscatter. The parameter 𝛤 and standard error in 𝛤 categorized based on RVI 
are illustrated in Fig. 8 and Fig 9, respectively, for different landcover classes. 𝛤 can be estimated 
using high-resolution SMAP co-polarization and cross-polarization radar backscatter data within a 
scale C through statistical regression. For any scale  𝐶 data granule there will be a reasonable 
number of scale 𝑀! radar data pairs to estimate the sensitivity parameter Γ.   

 
The term 𝛤 ∙ 𝜎!" 𝐶 − 𝜎!" 𝑀!  is the projection of the cross-polarization subgrid 

deviation onto the co-polarization space. These variations are due to the heterogeneity in parameters 
α and β in the radar co-polarization space. It can be converted to brightness temperature units for 
use in (15) through multiplication by 𝛽 𝐶 , the particular radiometer grid scale 𝐶 conversion factor 
relating co-polarization backscatter variations to brightness temperature variations. Thus the 
product 𝛽 𝐶 ∙ 𝛤 ∙ 𝜎!" 𝐶 − 𝜎!" 𝑀!  is the contribution of subgrid (subgrid to scale C) variations 
in α and β to the brightness temperature at scale 𝑀! . The SMAP active-passive brightness 
temperature disaggregation algorithm is completed by substituting the term 𝛽 𝐶 ∙ 𝛤 ∙ 𝜎!" 𝐶 −
𝜎!" 𝑀!  to RHS Term III in (15), 
 

𝑇!! 𝑀! = 𝑇!! 𝐶 + 
𝛽 𝐶 ∙ 𝜎!! 𝑀! − 𝜎!! 𝐶  

+𝛽 𝐶 ∙ 𝛤 ∙ 𝜎!" 𝐶 − 𝜎!" 𝑀!                            (16) 
 
 
which can be written more compactly as 
 
𝑇!! 𝑀! = 𝑇!! 𝐶 +   𝛽 𝐶 ∙ 𝜎!! 𝑀! − 𝜎!! 𝐶 + 𝛤 ∙ 𝜎!" 𝐶 − 𝜎!" 𝑀!                 (17) 
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The disaggregated brightness temperature 𝑇! 𝑀!  at 9 km is an intermediate product of the 
proposed active-passive algorithm. Averaging (16) [   !

!"
𝑇!! 𝑀! ]!"

!!!  over nm pixels result in         
(18) since the second and third terms are perturbations around mean values. This ensures that the 
brightness temperature from the active-passive algorithm is consistent with the radiometer 
brightness temperature. This further ensures close consistency of soil moisture products from 
passive and active-passive algorithm.  
 
  𝑇!! 𝐶 ≈ !

!"
𝑇!! 𝑀!!"

!!!                       (18) 
 

From this point tau-omega (τ-ω) brightness temperature retrieval algorithms with 
considerable heritage can be used to retrieve surface soil moisture [6, 21, and 22]. Here for 
preliminary testing the single channel retrieval algorithm in conjunction with high-resolution 
ancillary data is used to retrieve soil moisture at 9 km. 

 
 

 
Figure 8: Parameter Γ determined using   𝜎!!  and 𝜎!"  from consolidated PALS measurements 
plotted with respect to RVI for different landcovers. 
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Figure 9:  Standard errors in estimated Γ for different landcovers with respect to RVI. 

 

Estimation of the β and 𝜞 Parameters 

The performance of the brightness temperature disaggregation that results in the 9 km soil 
moisture retrievals is heavily dependent on robust estimates of the parameters β and 𝛤 in (17).  
Regression of the time-series (formed based on multiple overpasses) for 𝑇!!(𝐶) and 𝜎!! 𝐶  are 
used to statistically estimate β. The statistically-estimated slope parameters are specific for a given 
location and reflect the local roughness and vegetation cover conditions. The parameters vary 
seasonally, therefore the time-series pairs of 𝑇!!(𝐶)  and 𝜎!! 𝐶  used for a location in the 
regression should be limited to a finite-length moving-window over which vegetation phenology 
can be considered constant. Depending on the dominant land cover vegetation, this may be as short 
as a few weeks for croplands and a few months for natural landscapes, especially those with 
evergreen (tropical or boreal) plant types. The robustness will be discussed further below. This 
translates to anywhere from two to about twenty or at most thirty pair of  𝑇!!(𝐶) and 𝜎!! 𝐶  for the 
regression analysis and statistical estimation of β. The issue is further complicated by the fact that 
robust estimation is possible only if there is adequate soil moisture variation within the window 
period (drydown or wetting event) to cause variations in both 𝑇!!(𝐶)  and 𝜎!! 𝐶  to allow 
estimation of a slope (β). Similarly 𝛤 is statistically estimated using pairs of 𝜎!! 𝑀!  and 𝜎!" 𝑀! .   

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.05

0.1

RVI

St
an

da
rd

 E
rr

or
 o

f 
Γ
 E

st
im

at
io

n 
[d

B
/d

B
]

All Observations: SGP99, SMEX02, CLASIC, SMAPVEX08

 

 

Mixed Forest
Grassland
Corn
Soybean
Wheat
Combined



  27 

 In the implementation of the brightness temperature disaggregation algorithm, the 
regression-based values of β and 𝛤 will be estimated in a moving time-window, and will be 
combined statistically with a prior estimates to yield a robust value for this parameter. The prior 
estimate of β is based on β-RVI relationships established at the same and other pixels over time.  
Observations from airborne field experiments show that RVI is indeed a unique and reliable 
estimator of β (Fig. 6). More importantly, RVI isolates the impact of vegetation and separates the 
effect of surface roughness. This is shown in Fig. 10 (a-c) where all PALS active and passive 
airborne observations from the SGP99, SMEX02, CLASIC and SMAPVEX08 are pooled together 
to statistically estimate β at every pixel within the experiment region. The β parameters are then 
stratified according to three indicators for vegetation cover. The first indicator used is the VWC 
estimated from optical and near-infrared vegetation classification. In Fig. 10a the β parameter 
stratified based on the dominant optical-based vegetation index does not show any sensitivity;  all 
classes of optically derived VWC yield essentially the same mean β.  In Fig. 10b the PALS-
observed cross-pol radar backscatter cross-section  is used as a vegetation classifier. Higher 
values of this cross-pol measurement indicate heavier vegetation cover. As evident in Fig. 10b, the 
β parameter is indeed closer to zero at high indicating strong attenuation of the radar and 
radiometer signals as expected with denser vegetation. The magnitude of β decreases as the value of 

 is reduced indicating less vegetation cover. However at very low values of  indicating 
nearly bare surface conditions, the value of β again increase and approaches near zero.  Thus, the 
fluctuations in  𝑇!!(𝐶) are apparently not evident in 𝜎!! 𝐶 . Such behavior is expected of ‘smooth’ 
surfaces for the radar measurements. Based on the field experiment measurements summarized in 
Fig. 10b, it is evident that the cross-pol  alone is not a unique indicator of a prior value for β.  
Fig. 10c shows the same β values but now stratified according to the radar-based RVI. Clearly, RVI 
is a unique indicator of the vegetation cover contributions to β across the dynamic range of RVI. 
Similarly the 𝛤 parameter priors are related to RVI in the L2_SM_AP implementation. 
 
 
 
 
 
 
 
 
 
 
 

hvσ

hvσ

hvσ hvσ
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Figure 10: Values of β estimated from PALS radar and radiometer measurements during SGP99, 
SMEX02, CLASIC and SMAPVEX08 segmented and plotted versus: a) optical- and infrared-
derived vegetation classification and VWC, b) cross-pol radar backscatter cross-section, and c) RVI 
as in (11).  

 In the baseline algorithm the values of β and 𝛤 are estimated using regression of pairs of  
𝑇!!(𝐶) and 𝜎!! 𝐶  over the finite and moving window of past SMAP radar and radiometer 
measurements and pairs of 𝜎!! 𝑀!  and 𝜎!" 𝑀! , respectively, over land regions that are within the 
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retrieval mask. The regression yields an error of estimation as well as the expected statistical slopes 
β and 𝛤.  

There are also prior estimates for β based on the RVI for the pixel and β-RVI relations 
established with field campaign datasets (Fig. 6).  The error of estimation of this prior estimate is 
𝑀𝑆𝐸(𝛽!"#$") and it is shown in Fig. 7. These errors of estimate will be updated with further field 
experiment data as they become available.  The prior β and the time-series estimates of β are 
merged together in a Bayesian framework. Essentially they are combined to form a posterior 
estimate of β, ie.,  𝛽!"#$%&'"& as defined in (19). The weights for the merger are the ratios of the 
errors of estimation to the sum of the errors of estimation 

 
𝛽!"#$%&'"& =   

!"#(!!"#$")
!"# !!"# !!"# !!"#$"   

∗ 𝛽!"# +   
!"#(!!"#)

!"# !!"# !!"# !!"#$"   
∗ 𝛽!"#$"    (19)   

 
where MSE is Mean-Square-Error, 𝛽!"#$" is a prior estimate of β that is derived from all relevant 
field experiments data (Fig. 7 and Fig. 9), and 𝛽!"#  is the statistically estimated slope using 
regression on pairs of  𝑇!!(𝐶) and 𝜎!! 𝐶  over the finite and moving window of past SMAP radar 
and radiometer measurements. Ultimately, 𝛽!"#$%&'"& will be used in (17). It is expected that the 
accuracy of 𝛽!"#$%&'"& will improve over the SMAP mission duration due to more availability of 
relevant data for 𝑇!!(𝐶) and 𝜎!! 𝐶 . A similar procedure is followed for and 𝛤. 
 
 

3.3 Option Algorithm 

There are several heritage and alternate algorithms for soil moisture retrieval that combine 
active and passive L-band measurements. The baseline algorithm described here draws from 
elements from these heritage algorithms in order to arrive at a robust and accurate approach. The 
alternate algorithms are nonetheless still under consideration and can be used for reference 
comparison. The current approach is to test the baseline algorithm with available synthetic data and 
field observations along with one option algorithm. The choice of option algorithm from among the 
alternatives is described below and in [17]. The option algorithm disaggregates the coarse resolution 
soil moisture estimates using the high resolution radar backscatter cross-section.  

The primary difference between the option and baseline algorithm is the input data. The 
inputs to the option algorithm are L2_SM_P (36 km) and L1_S0_HiRes (3 km). The mathematical 
formulation and approach of the option algorithm is quite similar to the baseline algorithm. The 
algorithm starts with the hypothesis that the volumetric soil moisture and co-polarized backscatter 
are linearly related through: 

 
             𝜃 = 𝐴 + 𝐵 ∙ 𝜎!!                                                                                             (20) 
 
where θ is volumetric soil moisture. At a given scale, A and B are parameters that depend on 
vegetation cover and type as well as surface roughness characteristics.  They vary seasonally and 
can be estimated at scale C using SMAP L2_SM_P and L1_S0_HiRes data time-series in a 
regression. 
 

From here on the formulation is exactly similar to the baseline algorithm, except that 𝑇!! is 
replaced with θ in (3) to (17). This leads to soil moisture estimation at spatial scale Mj analogous to 
(17) as: 
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𝜃 𝑀! =   𝜃 𝐶, 𝑡 +   𝐵 𝐶 ∙ 𝜎!! 𝑀! − 𝜎!! 𝐶 − 𝛾 ∙ 𝜎!" 𝐶 −   𝜎!" 𝑀!                         (21) 
 
θ(C) in (21) is obtained from the SMAP L2_SM_P product. The radar measurements 𝜎!! 𝑀! , 
𝜎!! 𝐶 , 𝜎!" 𝑀! , and 𝜎!" 𝐶  are obtained from SMAP L2_SM_A product. The statistically 
estimated parameters 𝐵 𝐶  and 𝛾 are estimated as done in the baseline algorithm.  
 
 

3.4 Process Flow of the Baseline L2_SM_AP Algorithm  

Figure 11 illustrates a simplified version of process flow of the current L2_SM_AP baseline 
algorithm. The process flow captures important processes that involve input data streams and static 
and ancillary data used in the algorithm to generate the L2_SM_AP soil moisture product.  
 

 

 
 

Figure 11: Process flow diagram of the baseline L2_SM_AP algorithm. The disaggregated TB at 9 
km are converted to soil moisture using algorithms described in L2_SM_P but based on 9 km 
resolution ancillary data.  

 

4 TESTS OF ALGORITHMS 

The performance of the baseline algorithm is evaluated using two distinct types of datasets 
to assess different aspects of the algorithm. PALS data facilitates testing the efficacy of spatial 
disaggregation (17). Simulated datasets are used to demonstrate the feasibility of ingesting the 
inputs based on the SMAP configuration. The following subsections elaborate these tests.  
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4.1 Test of Baseline Algorithm Using PALS Data 

This study applies the real field data from PALS to the L2_SM_AP baseline algorithm. 
PALS L-band radar and radiometer have similar frequencies like SMAP; however, PALS data have 
much finer spatial resolution (~0.8 km). To apply the baseline algorithm to PALS data, the data are 
gridded for the radiometer at ~4 km and the radar at ~0.8 km (Fig. 3). Equation (17) is implemented 
to obtain the downscaled 𝑇!!at ~0.8 km and single channel algorithm retrieved soil moisture at ~0.8 
km resolution as shown in Fig. 12. To validate the retrieved soil moisture estimates at ~0.8 km 
resolution, the field averaged soil moisture calculated from in situ measurements in 31 fields over 4 
days are used (Fig. 13). The representative spatial resolution of a field is nearly ~0.8 km making the 
comparison spatially compatible.  
 

4.1.1 Minimum Performance Algorithm 

To evaluate the baseline algorithm against a reference, minimum performance soil moisture 
retrieval is used. The minimum performance soil moisture values are retrieval from 𝑇!! at ~0.8 km 
that are obtained by direct re-sampling (simple assignment) of  𝑇!!at ~4 km to high resolution ~0.8 
km pixels. It is essentially a resampling of brightness temperature to finer scale without use of 
information from the radar. Fig. 13 shows that the baseline algorithm with RMSE 0.033 [cm3 cm-3] 
outperforms the minimum performance with RMSE: 0.056 [cm3 cm-3]. The difference between the 
baseline algorithm and the minimum performance algorithm is a measure of the value of radar 
measurements in the active-passive data product. 
 

Another test was performed to evaluate the contribution of radar cross-polarization 
backscatter measurements (𝜎!") to the algorithm (17). The radar 𝜎!" addresses the heterogeneity 
especially due to vegetation within the coarse radiometer footprint as discussed in Section 2.1.3. 
The test was conducted by ignoring the radar cross-pol measurement (𝜎!") in the algorithm (17) or 
essentially setting Γ = 0. Therefore (17) becomes 
 
𝑇!! 𝑀! = 𝑇!! 𝐶 +   𝛽 𝐶 ∙ 𝜎!! 𝑀! − 𝜎!! 𝐶                                                         (22) 

The retrieval using (22) is shown in Fig. 14. The 0.043 [cm3 cm-3] RMSE of this scenario is greater 
than the 0.033 [cm3 cm-3] RMSE obtained from the baseline algorithm (17). This test clearly 
illustrates the important contribution of 𝜎!"  in capturing sub-radiometer measurement scale 
vegetation heterogeneity for the baseline algorithm.   
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Figure 12:  Disaggregated 𝑇!! and retrieved soil moisture estimates at 0.8 km resolution. 
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A)                                                                           
 

 
B) 
 
Figure 13: Plots of averaged soil moisture from field measurements and retrieved soil moisture 
estimate from the SMEX02 PALS data for 8 days. A) baseline algorithm, and B) minimum 
performance. 
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Figure 14: Plots of averaged soil moisture from field measurements and retrieved soil moisture 
estimate from the SMEX02 PALS data for 8 days when the retrieval is performed with no cross-pol 
(hv) radar backscatter information. 
 

4.2 Test of Baseline Algorithm using Simulated Data 

4.2.1 Global Scale Simulation 

In order to test the L2_SM_AP algorithm across a wider range of conditions than those 
encountered in the limited airborne field campaigns, simulation environments are also used. A 
global-scale simulation (GloSim) for the SMAP mission is developed and implemented on the 
SMAP Testbed at the SMAP Science Data System (SDS). The complete detail of Testbed 
mechanism and implementation is provided in SMAP Testbed document (SMAP Science Data 
Management and Archive Plan. SMAP Project, JPL D-45973, Jet Propulsion Laboratory, Pasadena, 
CA).  

The GloSim orbit simulator on SDS mimics the SMAP configuration and follows an 8-day 
exact repeat pattern that provides total global coverage in 2-3 days. GloSim includes the capability 
of generating orbital files of simulated radiometer and radar observations of TB and 𝜎, respectively. 
Geophysical data (e.g., soil moisture and soil temperature) obtained from GMAO MERRA at 9 km 
resolution covering one year and ancillary data (e.g., model parameters, soil texture, landcover, 
water bodies, and VWC) at high resolution (≤9 km; e.g., MODIS-derived VWC and land 
classification) are used as underlying truth maps to sample forward observations of TB and 𝜎 to 
mimic SMAP-like measurements. GloSim also applies realistic instrument/antenna beam sampling 
and orbital sampling to simulate the footprint-averaged observations within swaths acquired by the 
SMAP instruments. These simulated observations, along with their noise-perturbed versions, are 
essential to the testing, development, and operational implementation of all SMAP Level 2 through 
Level 3 soil moisture and freeze/thaw algorithms.  
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L2_SM_AP retrievals are performed on the simulated SMAP half orbit granules of 
L2_SM_P and L2_SM_A generated from GloSim. The baseline algorithm of L2_SM_AP is 
implemented for extensive analyses. These analyses help to understand and develop solutions and 
risk reduction of various important operational and algorithm related issues such as: 

1) Size of temporal window required over valid land pixels of radiometer and radar data to 
derive high fidelity algorithm parameters. 

2) To identify regions of the world where a temporal window is essential due to changing 
vegetation phenology and ground conditions. 

3) Develop and mature algorithm parameters database. 
4) Develop and mature L2_SM_AP error budget table.  
5) Highlight the sensitivities of various ancillary data, masks and flags on the L2_SM_AP 

retrievals. 
6) Assess the limitations of the L2_SM_AP algorithms, and help to tune the algorithms 
7) Help mature the L2_SM_AP software development. 
8) Assess the computational needs of L2_SM_AP processor. 
9) Demonstration of end-to-end integration of L2_SM_AP with the SMAP data process flow 

in the SMAP Testbed. 
 

The L2_SM_AP processor is successfully implemented and run on the SMAP SDS as 
illustrated in process flow diagram Fig. 11. The water-body corrected brightness temperature 𝑇! 𝐶  
at 36 km along a swath (Fig. 15) with associated QC flags is available as part of the L2_SM_P 
product, and is a direct input to the L2_SM_AP baseline algorithm. The baseline algorithm also 
receives as input the 3 km gridded 𝜎!! data and 3 km transient water body and freeze/thaw flags 
produced during the L2_SM_A processing are input to the L2_SM_AP algorithm. Figure 16 shows 
aggregated 𝜎!! at 9 km over the same swath (as of Fig. 15) that includes appropriate noise as 
expected in the nadir region and outer edges of the swath.  

 
For discussion and illustration of L2_SM_AP retrievals the particular swath as shown in 

Fig. 15 or Fig. 16 is selected because it covers a wide range of conditions in soil moisture state (dry 
– wet), soil texture (sandy – clayey), landcovers (rainforest  – desert), and different hydroclimatic 
domain.  

 
Along with the SMAP products as inputs, the L2_SM_AP processor implemented in the 

SMAP SDS also ingests static (e.g., soil) and dynamic (e.g., VWC and soil temperature) ancillary 
datasets, and masks (e.g., urban, inland water bodies) at 9 km Earth fixed grid over the global extent 
from the Testbed.  

 
A separate processor is also developed to determine the parameters required in (17). For the 

GloSim retrievals, the parameter (β) estimation is conducted using time series of 𝑇!!(𝐶) and 𝜎!! 𝐶  
for all grid cells. The parameters determined from regression of 𝑇!!(𝐶) and 𝜎!! 𝐶  time series are 
quantitatively verified with the parameters obtained using the Aquarius data (refer Section 5.2). 
Figure 17 illustrates the state of parameter β used over the swath in (17) that clearly exhibits 
dependency of β with respect to landcover. The landcover mostly influence the dynamic range of 
𝑇!!(𝐶) and 𝜎!! 𝐶 , and hence the parameter β. Another parameter Γ in (17) that detects the 
heterogeneity within (C) is determined on the fly over the swath and is shown in Fig. 18. Typically 
very high correlation is observed between 𝜎!! and 𝜎!!, and that is well captured in Fig. 18. The 
parameter Γ also displays mild dependency for landcover.  
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Figure 15: 𝑇!!(𝐶)!"# data gridded at 36 km from GloSim for one day in June. 

 
Figure 16: Swath of aggregated σvv at 9 km grid from GloSim for one day in June. 
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Figure 17: Beta (β) parameter used for the swath from GloSim for one day in June. 

 
Figure 18: Gamma (Γ) parameter used for the swath from GloSim for one day in June. 
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The baseline algorithm of L2_SM_AP (17) is applied on data obtained from L2_SM_P and 
L2_SM_A (Fig. 15-16). Fig. 19 shows that the disaggregated 𝑇!! at 9 km that captures the spatial 
heterogeneity detected by SMAP radar otherwise masked by coarse scale brightness temperature 
measurements. Soil moisture retrieval is conducted on the disaggregated 𝑇!! using the tau-omega 
(τ-ω) model (Single Channel Algorithm). Figure 20 and Fig. 21 show the retrieved and truth soil 
moisture at 9 km, respectively. Appropriate noise is introduced in the ancillary data while 
performing the retrievals. Comparison of Fig. 20 and Fig. 21 show similar spatial patterns of soil 
moisture for most of the regions. However, over the high-vegetated regions (e.g., rain forest) the τ-
ω model did not converge and therefore a null value is assigned during the retrievals process. To get 
initial assessment of L2_SM_AP retrievals, errors are computed for the swath and are shown in Fig. 
22, higher error for regions having high vegetation is according to the expectation. The median of 
errors is plotted in Fig. 23 to ascertain the error structure in soil moisture retrievals according to the 
stratified mean of VWC.  

 
Nearly ~5300 half-orbit granules of L2_SM_P and L2_SM_A are processed for one year 

period for the GloSim L2_SM_AP retrievals.  Root-Mean-Square-Errors (RMSE) are computed for 
each 9 km grid cell. Spatial evolution of RMSE at a global extent is shown in Fig. 24 for 6 months 
(April – September) period. The spatial pattern of RMSE in Fig. 24 matches with the global VWC 
(Fig. 25) spatial distribution. RMSE are not computed for the 9 km grid cells having more than 5% 
water fraction within 9 km, more than 25% urban areas, open water bodies, and mountainous region. 
Quantitative values of RMSE with respect to a range of VWC over the global extent is shown in Fig. 
26. The RMSE curve in this plot clearly meets the SMAP L1 requirements.  
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Figure 19: Swath of disaggregated 𝑇!! at 9 km grid from GloSim for one day in June. 
 

 
Figure 20: Swath of retrieved soil moisture at 9 km grid from GloSim for one day in June. 
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Figure 21: True soil moisture  at 9 km grid from GloSim for one day in June. 
 

 
Figure 22: Errors in soil moisture  at 9 km grid from GloSim for one day in June. 
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Figure 23: Errors in soil moisture against VWC at 9 km grid from GloSim for one day in June. 
 
 
 
 

 
Figure 24: Root-Mean-Square-Errors (RMSE) in soil moisture estimates at 9 km grid from GloSim 
for six month  period (Apr-Sep). 
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Figure 25: VWC at global extent at 9 km on one day in June. 

 
 
 
 

 
Figure 26: Root-Mean-Square-Errors (RMSE) stratified by the mean VWC contained within 9 km 
from GloSim for six month  period (Apr-Sep). 
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4.2.2 Monte-Carlo Simulation 

A Monte-Carlo error analysis is performed that provides further assessment of other 
important factors beyond the tests performed in Section 4.2. The analysis in this section focuses on 
two prominent issues that potentially influence the performance of L2_SM_AP baseline algorithm 
of the SMAP Mission: 
 
1)  Potential of cross-pol to characterize landcover spatial heterogeneity within a radiometer pixel, 
and  
 
2) Sensitivity of algorithm to radar calibration and contamination uncertainties, noise in 𝑇! and 
errors in ancillary data  
 

To perform a conservative assessment of the L2_SM_AP baseline algorithm that addresses 
the above concerns, a dynamic heterogeneous zone with variable VWC from within the CONUS 
domain is extracted as shown in Figure 27.  

 
 

 
Figure 27: Study region selected from the CONUS domain. 

 
The landcover of the study domain (Fig. 27) is assigned as follows: Bare soil when VWC is 

0 – 0.5 kg/m2, Grass when VWC is 0.5 – 1.5 kg/m2 and Corn when VWC is 1.5 – 5 kg/m2. This 
method of assigning landcover artificially is to create a landscape with even greater heterogeneity in 
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VWC (Fig. 27) to evaluate the performance of the L2_SM_AP baseline algorithm in a spatially 
diverse region. The choice of landcover is governed by the availability of lookup tables of radar 
measurements for grass and corn cover types. Forward models are used to calculate true brightness 
temperature (𝑇! ) and backscatter (𝜎 ) from geophysical truths (e.g, soil moisture, and soil 
temperature) of the study domain. The geophysical truths are from a land surface model operated by 
Land Information System (LIS) at NASA GSFC. The tau-omega model is used in forward modeling 
of  𝑇! and forward modeling of 𝜎 (co- and cross-polarization) is through the use of lookup tables 
provided by Dr. Leung Tsang (University of Washington). 
 

A Monte Carlo study is conducted to evaluate the contribution of radar cross-pol (𝜎!") data 
to detect spatial heterogeneity, and how radar cross-pol (𝜎!") data improve the performance of the 
L2_SM_AP baseline algorithm. The results shown in Fig. 28 are from error-free (no noise in 𝑇!, 𝜎, 
and ancillary information) data when 𝜎!" is used in (17) as compared to the performance of no 𝜎!" 
as in (22). Significant improvement in soil moisture RMSE (i.e., reduction of 0.02 cm3/cm3 in 
RMSE) at M scale across the VWC range is observed by accounting for the heterogeneity in 
vegetation through 𝜎!" that adjusts 𝜎!! to reflect mostly the spatial fluctuations due to soil moisture 
within C.  

 

 
Figure 28: Impact of 𝜎!" on the L2_SM_AP baseline algorithm. 
 

 
 
Another Monte Carlo simulation is conducted to assess the sensitivity of the algorithm to 

radar calibration and contamination uncertainties, noise in 𝑇! , and errors in ancillary data. To obtain 
a conservative assessment, radar data with higher noise floor (𝜎!"  dB) level are used. The 
parameters of interest that affect the active-passive algorithm are 𝜎!"dB and number of looks (N). 
In the study, 𝜎!"  and N are -33.5/-28.5 and 60/200 (include fore+aft) at inner/outer edge of the 
swath, respectively. Based on the 𝜎!"and N, three scenarios are used, with 𝜎!"  equal to -33.5/-
30.5/-28.5 and corresponding N equal to 60/130/200 that represent the inner-edge, middle and 
outer-edge of the swath. Noise due to calibration and contamination is also used, with calibration 
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error for co-pol in linear units of 0.0593, calibration error for cross-pol in linear units of 0.211, and 
contamination error for co- and cross-pol in linear units of 0.0682. These values are selected in 
consultation with the radar instrument team. The calibration and contamination noise is added at 
spatial scale of M. Simulations are conducted for all three scenarios (i.e., for different  𝜎!"). In the 
active-passive algorithm 𝜎 𝑀  is obtained by spatially aggregating 𝜎 at 3 km. This step reduces the 
speckle noise (KpC) by a factor of 3 (i.e, 𝑛). The aggregation of 𝜎 renders almost similar noise 
levels at M for all three above mentioned scenarios. Since KpC at M benefits from increasing N 
with the degradation of  𝜎!". Uncertainties in 𝑇! and other parameters are introduced as shown in 
Table 3. 

 
Table 3: Uncertainty introduced in parameters for soil moisture retrieval . 

Parameter Uncertainty associated (1 std.) 
𝑇! 1.5 K 

Vegetation Opacity (τ) 10% 
Soil Temprature 2 K 

Albedo (ω) 5% 
Roughness (h) 10% 

Sand fraction (sf) 10% 
Clay fraction (cf) 10% 

 
 
 

 
Figure 29: Performance of the baseline algorithm from Monte Carlo simulation. 
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Figure 29 shows the resulting RMSE values in the active-passive algorithm that incorporates noise 
in 𝑇!, 𝜎, and ancillary information. Results highlight that incorporating the cross-pol radar signature 
to deal with vegetation and surface roughness heterogeneity significantly improves the performance 
of the algorithm. The above results are based on a small region extracted from the CONUS domain, 
therefore a caveat is that the RMSE curve may be subject to change when the baseline algorithm is 
implemented to a larger spatial domain. However, we get a very favorable result from the GloSim 
L2_SM_AP outputs (Section 4.2.1) that include most of the expected geophysical conditions 
encountered during soil moisture retrievals. 
 
 
 

4.3 Error Budget of Baseline Algorithm 

The baseline algorithm (Section 2.1.3) error budget is estimated using the basic input 
uncertainty and parameter perturbations in a sensitivity study.  The input data are the water body 
corrected brightness temperature and the radar backscatter cross-sections that are averaged to 9 km. 
The radar pixels that include water bodies are excluded as well. 

 
Table 4 lists the various contributions to the disaggregated brightness temperature at 9 km 

resulting from the baseline algorithm. The first numbered row is the estimated error in the L1C_TB 
(36 km EASE grid) which is due to the instrument, geophysical contributions to earth surface 
brightness temperature and gridding. Effects of water bodies are removed from the brightness 
temperature. Assuming a nominal 5% error in the estimation of inland water bodies, the estimated 
contribution of error is about 0.45 K.  The errors due to mis-specification of inland water bodies are 
dependent on the absolute percent of water fraction.  A 5% error is assumed on a condition with 5% 
water body fraction.  It should be noted that this source of error can be very large. For example if a 
pixel contains 10% inland water and there is 10% error on its specification, the impact on brightness 
temperature correction can be as large as 2.0 K uncertainty. For 3% error on 3% water fraction, the 
error falls to 0.16 K.  As a nominal case 5% error on 5% water coverage is considered.  The 
permanent water bodies within a radiometer pixel are estimated from existing data such as the 
SRTM. Dynamic water bodies are detected using the SMAP radar backscatter cross-sections (see 
L2_SM_A ATBD). 

 
The water-body adjusted brightness temperature root-sum-of-squares (RSS) is reported in 

row three of Table 4. The baseline algorithm uses the radar backscatter cross-section and brightness 
temperature time-series to estimate a disaggregated 9 km brightness temperature. The contribution 
of radar backscatter cross-section calibration and contamination noise is estimated using the Monte 
Carlo method described in Section 2.2.3. The radar noise and uncertainty contributions to the 
disaggregated 9 km brightness temperature is estimated to be 2.0 K based on the baseline algorithm 
time-series models. This uncertainty is shown in row four of Table 4 error budget. The total 9 km 
disaggregated brightness temperature error is shown as an RSS in the fifth row of Table 4. 

 
Soil moisture percent volumetric (cm3/cm3) is estimated based on the disaggregated 9 km 

brightness temperature using the same algorithms and ancillary data as L2_SM_P. The ancillary 
data are at higher resolution (9 km versus 36 km). In some cases such as land surface temperature 
the errors carried for L2_SM_P will be lower than those that need to be carried for L2_SM_AP 
because the source of the ancillary data are at the coarser resolution. Therefore some of the smaller 
scale (sub-40 km and up to 9 km) heterogeneity is not accounted for in their use. There are however 
other factors that benefit the retrieval of surface soil moisture when implemented at 9 km versus 36 
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km. These occur where high resolution ancillary data are available. Soil texture for the dielectric 
model, vegetation information for the canopy opacity can be named as few examples. Nonetheless 
in this error budget we carry the same numbers as those for the single-channel surface soil moisture 
retrieval algorithm used in L2_SM_P. These are shown as rows six through eight in Table 4. Once 
they are added as RSS with the disaggregated brightness temperature at 9 km (row five), the total 
estimated brightness temperature error is 3.76 K (row nine) which meets the SMAP Level 1 science 
requirements when soil moisture is retrieved. 

 
 
 

Table 4: Error budget in degrees Kelvin 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
*𝑇! error requirement of 1.3 K is based on a 30 km swath grid. 
 
 
Table 5 represents the same error budget but with more detail and in units of percent 

volumetric soil moisture cm3/cm3. Row two introduces three levels of uncertainty associated with 
inland water body specification, namely 3%, 5% and 7%. These apply to nominal 3%, 5% and 7% 
fractional water body within the 36 km radiometer pixel. As evident in row three, the correction for 
inland water bodies is critical because it can be a large contributor to the error budget. The 
emissivity of water and land are very different and any misspecification leads to large errors. 
Together with the radar backscatter uncertainty contributions in the baseline algorithm, the row one 
to four RSS total error of 9 km brightness temperature is shown in row five of Table 5. The nominal 
values are indicated from the ranges through underscore. 

 
Tables 4 and 5 are different from this point onwards. Table 5 uses the brightness 

temperature single channel surface soil moisture retrieval algorithm to estimate the uncertainty 
contribution of ancillary data and retrieval model in percent volumetric soil moisture cm3/cm3. Also 
five levels of Vegetation Water Content (VWC) are used because vegetation opacity is considered 
to be a major factor in the retrieval accuracy.  The errors due to 2.0 K land surface temperature, 
10% uncertainty in 9 km VWC, 5% error in dielectric model percent sand and clay specification, 

Error Sources at 36 km Ease Grid  Estimated Error K 

1 

 
Radiometer precision and calibration stability, faraday rotation, 
atmospheric gases, non-precipitating clouds, and gridding  

 
1.3* 

2 
 
Waterbody fraction surface heterogeneity 5% error 0.45 

3 
 
Adjusted Corrected  TB  RSS 1.38 

4 
 
Radar calibration and contamination error 2.00 

5 
 
Disaggregated  TB  (9 km) estimation RSS 2.42 

6 
 
Vegetation Water Content 10% error 

 
1.60 

7 
 
Soil temperature (2 K) 

 
1.70 

8 
 
Model parameters (h, ω, b, %sand and %clay all at 5% error) 

 
1.40 

9 
 
Disaggregated  TB  (9 km) estimation and geophysical RSS 3.76 
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and 5% error on major model parameters are shown in rows six through nine of Table 5. The total 
retrieval uncertainty is shown in the last row of Table 5 for five vegetation classes. 

 
 

Table 5: Error budget in volumetric soil moisture cm3/cm3 

 
* Calibration and contamination errors 
**Vegetation Water Content  
Underlined values are used as nominal  

 
The nominal value is based on the limit of 5 kg m-2 specified for SMAP Level 1 science 

requirements. As shown in Table 5 the baseline L2_SM_AP can meet the 0.04 cm3/cm3 requirement 
even under this vegetation cover. The error budget is subjected to change based on future studies 
using cal/val data and GloSim retrievals and uncertainty analysis. 
 
 

5 PRACTICAL CONSIDERATIONS 

5.1 Algorithm Tests and Baseline Selection  

Prelaunch activities: 
 

Error Sources Estimated Error Nominal Value 

1 

Radiometer precision and 
calibration stability, faraday 
rotation, atmospheric gases, non-
precipitating clouds, and gridding 

 
1.3  K 

1.3  K 
 

2 

 
 
Waterbody fraction  

3% 5% 7% 
  

0.16 K 0.45  K 
 

2.00 K 0.45 K 
 

3 
 
Adjusted Corrected  TB  RSS 1.14  K 1.37  K 

 
2.29 K 1.37 K 

 
4 

 
Radar S0(pp) and S0 (pq) errors* 2.00  K 2.00 K 

 
5 

 
Disaggregated  TB  (9 km) RSS 2.30 K 2.42 K 3.04 K 2.42 K 

  
6 

 
VWC** with 10% error 

0-1 
kg/m2   

1-2 
kg/m2   

2-3 
kg/m2   

3-4 
kg/m2   

4-5 
kg/m2   

   
0.003 

cm3/cm3 

 
0.01 

cm3/cm3 

 
0.015 

cm3/cm3 

 
0.020 

cm3/cm3 

 
0.025 

cm3/cm3 0.025 cm3/cm3 
  

7 
 
Soil temperature (2 K) 

 
0.010 

cm3/cm3 

 
0.013 

cm3/cm3 

 
0.015 

cm3/cm3 

 
0.020 

cm3/cm3 

 
0.025 

cm3/cm3 0.025  cm3/cm3 
  

8 
 
Soil texture (5% error in sand & clay 
fraction ) 

 
0.002 

cm3/cm3 

 
0.003 

cm3/cm3 

 
0.003 

cm3/cm3 

 
0.004 

cm3/cm3 

 
0.010 

cm3/cm3 0.01  cm3/cm3 
  

9 
 
Parameters (h, ω, and b) 5% error each 

 
0.003 

cm3/cm3 

 
0.004 

cm3/cm3 

 
0.004 

cm3/cm3 

 
0.006 

cm3/cm3 

 
0.010 

cm3/cm3 0.010  cm3/cm3 
  

10 
 
Soil moisture retrieval at 9 km  

 
0.011 

cm3/cm3 
0.017 

cm3/cm3 
0.022 

cm3/cm3 
0.029 

cm3/cm3 
0.0385 

cm3/cm3 0.0385  cm3/cm3 
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I) Development of active-passive retrieval algorithms in accordance with the SMAP configuration 
and measurements.  
II) Modification and tuning of active-passive retrieval algorithms to comply with the SMAP 
measurements. 
III) Performance assessment of the candidate retrieval algorithms on a common geophysical 
database and prelaunch cal/val data  
IV) Downselection of the baseline algorithm based on performance, better understanding of errors, 
lower bias and value to applications.  
 

Current and future work on SMAP testbed is designed accordingly to fulfill these prelaunch 
conditions stated above. The work on the testbed will also facilitate quantification of error budget 
for L2_SM_AP product based on inputs and ancillary data. 

 
The selection of the current baseline algorithm (Section 3.2) is based on the following 

criteria:  
 

• The primary inputs to the baseline algorithm are direct measurements of SMAP, and the 
expected uncertainties and errors associated with these measurements are better known than 
the retrieved/derived SMAP products that are used in the option algorithm (Section 3.3). 
This facilitates understanding the inner mechanism of the baseline algorithm and better 
assessment of RMSE in output soil moisture product (~9 km) 

• Measurements made using airborne instruments (PALS) during cal/val campaigns directly 
contribute to the development of the baseline algorithm and help understand the dynamics 
of the relationship that exists between the inputs to the current baseline algorithm for 
different conditions and landcovers. 

• Provide more confidence in bias removal from the disaggregated brightness temperature 
and ultimately for the output soil moisture product (~9 km); the mean of the 9 km 
disaggregated brightness temperature is set to be equal to the SMAP radiometer 
measurement. In this way biases are removed between the radiometer and disaggregated 
fields. The same would not be possible with soil moisture retrieval fields from different 
algorithms. 

• In the option algorithm the RMSE in the output soil moisture product depends on the 
RMSE of input soil moisture at coarser resolution. Therefore the RMSE of option algorithm 
is always greater than the input. However, this limitation is alleviated in the baseline 
algorithm. 

• The baseline algorithm produces a high resolution (9 km) disaggregated brightness 
temperature which could be of added science value to the suites of products e.g., direct 
radiance assimilation in weather forecast models, land surface hydrology models or even 
L4_SM. 

 
 
 

Postlaunch activities: 
 
During the postlaunch period most of the activities would be to tune the L2_SM_AP 

baseline algorithm using the real SMAP observations/products and assess the algorithms using the 
postlaunch cal/val data. The algorithm assessment will be a comparison of retrievals at 9 km with 
ground-based observations that have been verified as providing a spatial average of soil moisture at 
this scale. However, other types of observations from soil moisture measurement networks (e.g., 
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SCAN network) or products from hydrologic modeling may contribute to post-launch assessment of 
the active-passive algorithms.  
 

5.2 Calibration and Validation (Cal/Val) 

The cal/val plan of L2_SM_AP product is distinctly divided into two parts: 1) Prelaunch, 
and 2) Postlaunch.  

 

5.2.1 Prelaunch Cal/Val 

The prelaunch cal/val activities should focus on algorithm development needs. The 
L2_SM_AP is a merged product of the SMAP radiometer and radar observations. L2_SM_AP 
baseline and optional algorithms use a time series of fine resolution radar measurements that are 
contained within a coarse resolution radiometer observation. The behavior and dynamics of the time 
series used in the algorithm is not fully understood for changing VWC, soil moisture regimes and 
for different landuse classifications. For prelaunch cal/val of the L2_SM_AP algorithm, a system 
such as the airborne PALS (Passive and Active L-band System) instrument is the most suitable 
platform because it provides concurrent and coincident L-band radar and radiometer measurements. 

 
So far, all of the available PALS data from previous soil moisture field campaigns (SGP99, 

SMEX05, CLASIC, and SMAPVEX08) are optimally used for the L2_SM_AP algorithm 
development efforts. From the L2_SM_AP perspective, the most useful of all PALS data are from 
the SMEX02 field experiment because the PALS observations are obtained over a dynamic range of 
soil moisture and vegetation conditions. The current baseline L2_SM_AP algorithm is successfully 
implemented using the PALS data from the SMEX02 field campaign. The PALS data from all the 
above mentioned four campaigns are also used to build a preliminary database of algorithm 
parameters. However, PALS data from these experiments do not have long and consistent time 
series and therefore impedes objective evaluation of the baseline and option algorithms.  

 
Total area observed by PALS flights during 4 field campaigns (SGP99, SMEX02, 

CLASIC07, and SMAPVEX08) is nearly 1900 km2, and the fraction for different landcover types 
are: Mixed forest = 26%; Grassland = 27%; and Cropland = 47%. The analysis highlights that the 
observations are predominantly over croplands. The following shows the % of different crop types 
within the PALS coverage: Bare soil = 13%; Corn = 36%; Soy = 41%; and Wheat = 10%. Based on 
the above analysis of landcover data, it is obvious that the PALS coverage of different landcover 
types is limited. 

 
The baseline landcover classification for the SMAP mission science algorithms is the 

MODIS derived IGBP dataset (refer to the Memo of Landcover for Ancillary Dataset) that 
comprises 17 classes of landcover types out of which 14 classes are relevant for L2_SM_AP 
algorithm. Table 6 elaborates the coverage of the different landcover types in percentage (%) of the 
global domain obtained from the IGBP dataset at 1 km spatial resolution. From Table 6, it is 
obvious that besides many other crop types, a few important landcover types such as shrubland, 
savanna and forest (Evergreen Broadleaf) are not yet covered by PALS flights. Shrubland and 
savanna type landcovers are of more relevance to the L2_SM_AP algorithm because of their 
extensive coverage over the global landmass (Table 6), and due to their VWC that is typically 
below 5 kg/m2 (which is a condition for satisfying the retrieval accuracy requirement in the SMAP 
requirements). For the time being the Evergreen Broadleaf landcover type can be ignored because 
the VWC of those forests is generally higher than 5 kg/m2. Therefore it is imperative to fly PALS 
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especially over regions having shrubland and savanna type landcovers for fine tuning and further 
development of the baseline L2_SM_AP algorithm.  

 
 

 
Table 6: Global coverage in % from IGBP dataset. 

 
 

MODIS IGBP class Definition of class Coverage % 
Evergreen needle Tree canopy cover > 60% 4.0 

Evergreen broadleaf Tree canopy cover > 60% 10.0 
Deciduous needle Tree canopy cover > 60% 0.6 

Deciduous broadleaf Tree canopy cover > 60% 1.6 
Mixed forest Tree canopy cover > 60% but no type exceed 60% 4.7 
Closed shrub Shrub cover > 60% 0.5 
Open shrub 60% > shrub cover > 10% 18.3 

Woody savanna Herbaceous system & 60% > forest > 30% 7.5 
Savanna Herbaceous system & 30% > forest > 30% 7.0 

Grassland Herbaceous system & 10% > forest  9.2 
Wetland Water + herbaceous system + tree 0.2 
Cropland Temporary crops 9.0 

Crop/pasture mix No class exceed 60% 2.1 
Bare Vegetation cover < 10% 13.7 

 
 
 
The SMAP project has conducted a major prelaunch cal/val campaign SMAPVEX’12. The 

ground and airborne data acquisition phase of SMAPVEX12 took place over a period of 
approximately six weeks from June 6 to July 19, 2012 in an agricultural region south of Winnipeg, 
Manitoba (Canada). The study domain of SMAPVEX12 comprises agricultural fields (corn, 
soybean, canola and wheat), grasslands and forest sites. The site is about 15 km x 70 km within the 
larger Red River Watershed. Airborne measurements using active and passive instruments including 
NASA’s L-band Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR) flown in a 
Gulfstream III, and the Passive/Active L-band Sensor (PALS) on board the Twin Otter International. 
The experiment also provides ground measurements of soil moisture, soil temperature, and others 
surface characteristics (vegetation, roughness, and soil density, etc.) at a time close to satellite and 
airborne acquisitions. The data from SMAPVEX12 campaign is being processed and will be 
available for L2_SM_AP algorithm development and testing. Further update of the L2_SM_AP 
ATBD will include results obtained from data of SMAPVEX12. 
 

Measurements from the NASA GSFC ComRAD (Combined Radar/Radiometer System) 
truck-based instrument [23] are also planned for the prelaunch cal/val activities. The upgraded 
system will be tested in field conditions. After the performance validation in field conditions the 
instrument is deployed in Maryland at the OPE3 study site for the 2012 growing season. The 
observations include at least two crop types at the site. Long deployments of ComRAD are 
recommended over different landcovers in the study site. Longer time series resulting from long 
deployment of ComRAD will assist to develop robust algorithm parameters. Longer time series data 
of TB and  𝜎 from ComRad will also help understand the sensitivity of algorithm parameters to the 
dynamic nature of vegetation and surface conditions. 
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Use of Aquarius Data for L2_SM_AP Algorithm Parameters 
 

Aquarius was launched on June 10, 2011, and almost a year worth of Aquarius mission data 
is now available. Aquarius provides L-band 1.2 GHz and 1.413 GHz radar and radiometer 
measurements, respectively, at three beam positions with incidence angle of 28.7, 37.8, and 45.6 
degrees. The spatial resolutions of three beams are slightly different, but all are nearly ~100 km and 
together provide 390km swath width. With this swath width it takes Aquarius seven days to cover 
the whole Earth surface. The satellite is in a polar sun-synchronous orbit crossing the equator at 
6pm (ascending) and 6am (descending) local time. The Aquarius radar and radiometer data are 
quite significant for SMAP active-passive (L2_SM_AP) algorithm because they are co-registered 
and have similar overpass time on Equator as proposed for the SMAP mission. Though Aquarius 
radar and radiometer data do not satisfy SMAP mission requirements, however, its L-band radar 
and radiometer provide a unique opportunity for prelaunch calibration and develop a prior database 
of parameters for the SMAP active-passive (L2_SM_AP) baseline algorithm. 

 
To make the Aquarius data suitable for the SMAP L2_SM_AP baseline algorithm 

prelaunch calibration analysis, the Aquarius data are preprocessed because of different antenna 
configuration and coarse spatial resolution. Firstly, the Aquarius radar and radiometer swath data in 
each beam are separately converted into the 36 km EASE grid by interpolating the data using the 
inverse-distance-weighted technique. Secondly, the overlapping areas of three beams are selected, 
which means that for any overlapping area the selected grid cell has at least two beam data. The 
incidence angle dependence slopes ([dB] or [K] per degree) are statistically calculated for 16 IGBP 
landcover classes. After obtaining the slopes for each landcover class, the three beam data are 
scaled to 40-degree incidence angle and binned at 36 km EASE grid projection for 7 days (seven 
days composite) to get the global coverage of L-band radar and radiometer data. The RFI was 
eliminated using the quality flag available in the Aquarius data. Eight months (Aug’11 to Mar’12) 
of Aquarius dataset are processed to get 30 global extent dataset of radar and radiometer 
measurements. The processing step may introduce artifacts in the gridded radar and radiometer 
data; however, such errors are tolerable because the processed data are used for initial evaluation of 
parameters (for L2_SM_AP baseline algorithm) by regression. 
 
 

  
a)  
 

b) 
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c) 
 

d) 

  
e) f) 
Figure 30: Scatter plots of 𝜎!! and 𝜎!! for different landcover classes obtained from processed 
Aquarius data. 
 

The processed Aquarius data (seven days composite) provides preliminary assessment of 
the algorithm parameters for SMAP L2_SM_AP baseline algorithm. Figure 30a-f illustrates the 
correlation between 𝜎!!  and 𝜎!!  for different landcover classes using one-week period (during 
August, 2011) data at a global extent. As expected, significant correlations and interesting radar 
backscatter features are observed for all the relevant landcover classes. The scatter plots (Fig. 28a-f) 
clearly show that the dynamic range of 𝜎!! and 𝜎!! increases with decreased volume scattering. 
High correlation between 𝜎!! and 𝜎!! leads to robust estimation of Γ parameters (17).  For most of 
the IGBP landcovers Γ is ~0.7, however, obtained at coarse resolution from Aquarius data.  

 
Analyses are also conducted to obtain initial assessment of β parameter (12) at a global 

extent. Especially, the Aquarius data provides a new insight of L-band radar and radiometer 
measurements correlation dynamics over different landcover classes at various parts of the world. 
Aquarius data over homogeneous regions (e.g., Sahara desert, Australian shrublands, and Amazon 
forest) are very valuable because the airborne measurements from field campaigns (SMEX02, 
SGP99, CLASIC, SMAPVEX08, and SMAPVEX12) do not include major biomes and landcovers 
(shrubland, savanna, desert, rainforest, tundra) that exist on the Earth surface. Figures 31-34 
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illustrate the value of β parameter and relevant statistics that influence its magnitude. Inappropriate 
values of β are eliminated from the global map because of lack of sufficient dynamic ranges in 𝜎 
and TB data, and freeze-thaw effects that alter the regime of backscatter and brightness temperature. 
It is obvious from Fig. 32 that reasonably high R2 values are observed where enough dynamic 
ranges in 𝜎 and TB time series data exist. Further down selection of β parameter from Aquarius data 
is conducted to develop a prior database. β parameters are categorized according to landcover 
classes and screened based on high R2 (>= 0.75) thresholding, to ensure fidelity of the parameters. 
Clear trends are observed in β parameters when plotted verses 𝜎!! (Fig. 35) for different landcover 
classes that indicate increase in magnitude of β with increasing cross-pol backscatter. The physical 
explanation to such phenomenon is the considerable decrease of dynamic range in 𝜎!!  due to 
increased volume scattering as compared to the changes in range of TB values. Volume scattering in 
radar backscatter is influenced by presence of vegetation and surface roughness, and is captured by 
𝜎!! measurement, which is directly proportional to volume scattering.  
 

 
Figure 31: β [K/dB] parameters obtained at global extent using processed Aquarius data for 8 
months period (Aug’2011 to Mar’2012). 
 

Figure 32: R2 statistics of correlation between 𝑇!! [K] and σvv  [dB] obtained from the processed 
Aquarius data for 8 months period (Aug’2011 to Mar’2012). 
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Figure 33: Range in 𝑇!! [K] obtained from the processed Aquarius data for 8 months period 
(Aug’2011 to Mar’2012). 
 
 
 
 
 
 

 
Figure 34: Range in σvv [dB] obtained from the processed Aquarius data for 8 months period 
(Aug’2011 to Mar’2012). 
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Figure 35: Trend in β parameters with respect to σhv for various landcovers. 
 
 
This Aquarius data analysis provides an excellent insight on prior estimates of Γ and β parameters 
obtained at global extent for the baseline active-passive algorithm (17). The GloSim retrieval results 
used these prior parameters estimate. In future, prior to the launch of SMAP, the data obtained from 
Aquarius measurements will be regularly processed to get longer time series data of 𝜎 and TB to 
make the parameters estimates more robust. 
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5.2.2 Postlaunch Cal/Val 

The postlaunch cal/val objective is to gather necessary scientific data to evaluate the data 
product to verify compliance with the SMAP mission requirement i.e., to produce an estimate of 
soil moisture in the 0-5 cm layer to an RMSE of 0.04 cm3/cm3 of absolute volumetric soil moisture 
for those areas of the global land area excluding regions of snow and ice, mountainous topography, 
open water, and vegetation with total water content greater than 5 kg/m2 at a grid resolution of 9 km. 
Postlaunch cal/val focus is also to fine tune the L2_SM_AP algorithms based on collected scientific 
data. The baseline validation will be a comparison of L2_SM_AP at 9 km with ground-based 
observations that have compatible spatial average of soil moisture. Other form of observations, 
measurements, and modeling outputs may also contribute to post-launch validation. Described 
below is a methodology matrix (Table 7) to achieve post-launch cal/val for L2_SM_AP. 

 
Table 7: Methodology prioritization matrix for L2_SM_AP cal/val. 
 

Methodology Data Required Importance Metrics 
 
Core Validation Sites 
 

 
Grid cell average for all 
overpass 

 
Primary 

 
RMSE, Bias, 
Correlation 

 
Sparse Network 

Spatially scaled grid 
cell value for each 
overpass 

Secondary: Pending 
results of scaling analyses 

 
RMSE, Bias, 
Correlation 

 
Satellite Product 
 

 
Orbit based matchups 

 
Secondary 

 
Pattern matching, 
Correlation 

 
Model Product 
 

 
Orbit based matchups 

 
Secondary 

 
Pattern matching, 
Correlation 

 
Field Campaign 
 

Detail estimates for 
limited set of 
conditions 

 
Primary 

 
RMSE, Bias, 
Correlation 

 
 
Core Validation Sites: As shown in the cal/val methodology prioritization matrix the Core 
Validation Sites (CVS) are of primary importance. The CVS is suppose to provide spatial average 
of soil moisture at 9 km spatial resolution with adequate replications, with minimal latency and with 
well known error quantification (verified against gravimetric measurements). NASA has established 
agreements with cal/val partners to provide CVS data. There are nearly 30 sites selected for CVS, 
however, all of them may not provide spatial average of soil moisture at 9 km. Selection of CVS for 
L2_SM_AP primary validation are being conducted, the selection process will also ensure global 
distribution from various landcovers and biomes. 
 
 
Sparse Network: Sparse soil moisture measurement networks available in the United States and and 
other part of the world. The limitation of such networks is low measurement density that results in 
one measurement site within a 9 km grid cell. It is challenging and difficult to use measurements 
from one in situ site within a 9 km grid cell for validation. Therefore, applied research to identify 
strategic measurement sites that are temporally stable (least affected and manipulated over a longer 
time period) and represent the grid average are critical for the success of  extensive validation of the 
L2_SM_AP product. Examples of sparse measurement networks in the United States are the USDA 
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Soil Climate Analysis Network (SCAN), the NOAA Climate Research Network (CRN), the 
Oklahoma Mesonet, SoilSCAPE network at Tonzi Ranch, California and Canton, Oklahoma, and 
the Illinois Soil Moisture Data from Illinois State Water Survey. Gaining access to sparse 
measurement networks located outside the United States should be considered. Data from soil 
moisture networks in Canada, Mongolia, China, Australia, and Europe are accessible through the 
Global Soil Moisture Data bank. To rationally use the sparse measurement network, cal/val of 
L2_SM_AP has to deal with data latency, verification of calibration and spatial scaling. At present 
the prioritization of sparse network is secondary, however, if the spatial scaling technique using 
triple collocation method yields reasonable comparison then the sparse networks will be used more 
effectively for L2_SM_AP cal/val. 
 

Besides the sparse networks there are new technologies (COSMOS and GPS) being 
evaluated that could potentially provide soil moisture information at much different spatial 
resolution. The details of these are still being developed. SMAP should participate in the site 
selection and evaluation of these networks in order to establish both the verification of the relevant 
depth and scaling to SMAP footprints. 
 
Satellite Products: During the SMAP mission lifetime, it is possible to get overlapping SMOS and 
GCOM-W soil moisture products. However, the spatial resolutions of these satellites (SMOS and 
GCOM-W) are coarser then SMAP L2_SM_AP resolution but the soil moisture data could be used 
for proving synoptic perspective and for matching spatial and temporal trends. 

 
Model Products: Soil moisture data/maps generated through hydrologic modeling at basin-wide and 
continental scales using assimilated data independent of SMAP products could be used for 
evaluation across large space and time domains. Most of the models (ECMWF, NCEP, and 
NASA/GMAO) produce data at coarser resolution then L2_SM_AP. Therefore soil moisture fields 
from models compared with SMAP soil moisture will be useful for evaluating spatial and temporal 
trends. There are many caveats while using the model products because of inherent uncertainty in 
any model-based soil moisture product since this is not one of the National Weather Prediction 
(NWP) system primary variables. The NWP models typically simulate a thicker surface soil layer 
than the layer that dominates the satellite measurement. Therefore, while these model products are 
useful, they must be used very carefully. As a result, they are considered to be of secondary 
importance for validating L2_SM_AP soil moisture product. 

 
Field Campaign: Soil moisture field campaigns specifically designed for the SMAP mission will 
take place after the launch. In situ surface and profile soil moisture measurements obtained during 
these experiments will play a vital role in a rigorous validation of the L2_SM_AP product against 
L1 requirements. Based on a schedule of a 2014 launch, at least one cal/val campaign is needed in 
the summer of 2015. The focus should be on the core validation sites such as Oklahoma and sites 
that include different hydroclimatic domains. Intensive and well-distributed in situ soil moisture 
sampling within the validation sites that falls within the Earth fixed grid of 9 km will provide the 
best spatially averaged soil moisture measurements. Long duration of these field experiments are 
also critical because it will capture the full dynamic range of soil moisture that will help understand 
bias in the product and compare the trends of soil moisture evolution.  
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Using ancillary information: Independent sources of ancillary information like precipitation data 
sets from GPCP are useful for qualitative comparison of spatial patterns in soil moisture in the 
L2_SM_AP product.  
 
 Complete details of cal/val plan are available in SMAP Calibration and Validation plan 
(SMAP Science Data Calibration and Validation Plan. SMAP Project, JPL D-52544, Jet Propulsion 
Laboratory, Pasadena, CA). 
 

5.3 Ancillary Data 

The data required other than SMAP mission data to process and retrieve near surface soil 
moisture are termed as ancillary data. The baseline algorithm retrieves soil moisture estimates from 
the disaggregated (downscaled) TB. Therefore the required ancillary data needed to process 
L2_SM_AP are similar to L2_SM_P requirements, except for the spatial resolution. The 
L2_SM_AP process needs both static and dynamic ancillary data. Static ancillary data are those 
data that normally do not change during the mission lifetime. The L2_SM_AP process needs 
permanent masks and geophysical parameters as static ancillary data. Permanent masks of water 
bodies, mountainous region, forest cover (VWC > 5 kg/m2), urban areas, and land area at high 
resolution (1 – 3 km) resampled in Earth fixed grid is desirable for L2_SM_AP processing and 
quality control. Sand fraction and clay fraction data at 9 km spatial resolution are examples of static 
ancillary data essential to retrieve soil moisture. The L2_SM_AP process will use static ancillary 
data archived in SDS for the mission. Dynamic ancillary data poses more challenges because they 
need frequent updates (daily, biweekly, monthly, and seasonally). The dynamic data required for 
L2_SM_AP process are effective surface soil temperature, VWC (for vegetation opacity τ), surface 
roughness, and landuse-landcover.  

 
Ancillary data from various resources are analyzed, and are selected as baseline ancillary 

data. SMAP ancillary data reports are being written for the individual ancillary data listed in Table 
8. These reports document the rationale for the choice of the primary source of the ancillary data, 
and will be made available to the public. Table 8 lists most of the static and dynamic ancillary data, 
data source, updating frequency and desired spatial resolution required for the L2_SM_AP retrieval. 
The amount and type of ancillary data needed are dependent to some extent on the choice of the 
specific retrieval algorithms.  
 

Table 8: Ancillary data required to produce the SMAP L2_SM_AP product. 

Parameter Updating 
Frequency 

Desired Grid 
Resolution 

Data Type Data Source 

%Sand and %Clay Done once  9 km  Static Composite of soil databases 
(HWSD, FAO, ASRIS, 
STATSGO, NSDC) 

Soil Texture Done once 9 km Static Composite of soil databases 
(HWSD, FAO, ASRIS, 
STATSGO, NSDC) 

Vegetation (b and ω) 1-2 weeks 9 km Static Values obtained from L2_SM_P 
ATBD look-up table 

Vegetation Opacity (τ) Daily/Weekly 9 km Dynamic MODIS 1 km NDVI converted to 
VWC and then to τ = (b*VWC) 

Roughness (h) Monthly 9 km Static L2_SM_P ATBD look-up table 
Effective soil  temperature Daily 9 km  Dynamic ECMWF  / MERRA (TBC) 
Waterbodies (permanent) Yearly 9 km Static MOD44W – a MODIS static open 

water product 
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Precipitation flag Daily 9 km Dynamic ECMWF total precipitation 
forecast (or GPM) 

Snow/Ice  flag Daily 9 km Dynamic NOAA Snow and Ice Mapping 
System (IMS) Product 

Mountainous flag Done once 9 km Static SRTM and GTOPO30 derived 
elevation, slope, range and 
variance 

Freeze/Thaw flag Daily 3 km Dynamic Obtained from L2_SM_A 
Urban area fraction Done one 9 km Static GRUMP data 

 
Some examples of the ancillary data used in L2_SM_AP retrieval are shown in Fig. 36-38. 
 
 

 

 
Figure 36: Global sand fraction of top soil at 9 km EASE grid projection. 

 

 
Figure 37: Urban extent fraction gridded at 9 km EASE grid projection. 
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Figure 38: Standard deviation in DEM gridded at 9 km EASE grid projection. 
 

Table 8 also lists the parameters (b, ω, and h) essential for soil moisture retrieval using 
downscaled TB (9 km). These parameters are dependent on the landcover types. Details of these 
parameters are available in L2_SM_P ATBD and the associated ancillary data report.  

 
It is important to be aware of the inherent errors in the ancillary data parameters and the 

latency involved in acquiring dynamic ancillary data. Errors present in the ancillary data affect the 
performance of the L2_SM_AP algorithms and ultimately the accuracy of the output product. This 
highlights the fact that the baseline and option algorithms should be robust to accommodate the 
expected inherent errors in the ancillary data. Results mentioned in Section 4.2.2 from Monte Carlo 
study conducted for the baseline algorithm show the effects and robustness due to errors in ancillary 
data. The issue of latency involved is more prominent for the dynamic ancillary data that requires 
daily update because they influence the stated latency requirements of the L2_SM_AP product 
availability to the public within 24 hours of data acquisition by the satellite. With the current 
L2_SM_AP baseline algorithm, the soil effective temperature is one such dynamic ancillary data 
parameter. However, the option algorithm is also affected indirectly by the latency of soil effective 
temperature. Current assessment indicates that there are no major obstacles based on the ancillary 
data latency which would prevent the L2_SM_AP product from meeting its requirements.   

 

5.4 Quality Control and Diagnostics 

 Quality control (QC) is an integral part of the L2_SM_AP processing. The QC steps of 
L2_SM_AP processing are based on the flags that are provided with the input data streams 
(L2_SM_P, and L2_SM_A), different types of masks, flags, and fractional coverage of other 
variables provided by ancillary data. The L2_SM_AP will process all data that have favorable 
conditions for soil moisture retrieval (VWC <= 5 kg/m2, no rain, no snow cover, no frozen ground, 
no RFI, sufficient distance from open water). However, soil moisture retrieval will also be 
conducted for regions with VWC > 5, rain, RFI repaired data, and places closer to water bodies, but 
appropriate flags will be added to these data points indicating their susceptibility to potentially high 
errors. The product specification table provided in Section 6 elaborates the fields for QC bit flags. A 
flow diagram in Fig. 39 illustrates the decision tree to perform L2_SM_AP retrieval.  
 
 As shown in Fig. 39, the L2_SM_AP processing involves merging of two data stream i.e., 
L2_SM_P and L2_SM_A. Therefore, the QC of L2_SM_AP output is influenced by these input 
data streams. In other words, the QC flags of L2_SM_AP output are the union of QC flags from 
L2_SM_P and L2_SM_A data streams.  However, due to differences in spatial resolution of the 
inputs (L2_SM_P and L2_SM_A) and output (L2_SM_AP), the assignment of QC flags in 



  62 

L2_SM_AP may differ from the flags associated with the inputs. The thresholds of ancillary data 
that initiate flagging in the L2_SM_AP product are still TBD/TBC. For example, 𝑇!!  data in 
L2_SM_P are corrected for the presence of water bodies. Studies are being conducted to assess the 
quality of corrected 𝑇!! data that are acceptable and within the desired uncertainty level that could 
be used in L2_SM_AP processing. The water body fraction is reported for all land-based 9 km grid 
cells in L2_SM_AP product file, and the water body flag bit is set in the retrieval quality field if the 
water body fraction is greater than a threshold value. In the case of VWC, L2_SM_AP retrieval is 
performed at all the grid cells irrespective of VWC but QC flag set only for grid cell having VWC > 
5 kg/m2. No retrievals are performed for L2_SM_AP grid cells that are associated with RFI, water 
body fraction above a particular threshold, frozen ground, snow, and urban fraction above threshold.  
 

 
 
 

Figure 39: Decision Tree of QC for L2_SM_AP product. 
 
  
Thresholds from masks that will initiate flags and operational decisions to process L2_SM_AP 
product are used in GloSim and will be available in L2_SM_AP product. Thresholds that initiate the 
flagging operation is mentioned as follows: 
 
Open water body flag: The open water fraction will be produced by the SMAP L2_SM_A product 
coupled that will be coupled with prior information on permanent water bodies from the MODIS 
(MOD44W) database. This information will be used to flag grid cells during soil moisture retrieval 
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processing in the following way: 
 

Water fraction is 0.00 – 0.05: Retrieve soil moisture, do not flag. 
Water fraction is 0.05 – 0.75: Flag and retrieve soil moisture.  
Water fraction is 0.75 – 1.00: Flag but do not retrieve soil moisture. 

 
RFI flag: Presence of RFI in the SMAP TB and σ data adversely affects the L2_SM_AP algorithm. 
Therefore specific logics are inbuilt in the L2_SM_AP processor to initiate flag during soil moisture 
retrievals. The RFI flag is initiates as follows: 
 

No RFI detected in TB and σ: Retrieve soil moisture, do not flag. 
RFI detected in TB and repaired: Flag and retrieve soil moisture. 

 RFI detected in σ and repaired: Flag and retrieve soil moisture 
 RFI detected in TB and not repaired: Flag and do not retrieve soil moisture. 
 RFI detected in σ and not repaired: Flag and do not retrieve soil moisture. 
 
Snow flag: The ancillary data that provide a binary indicator for presence of snow is used for 
flagging in the following way: 
 

Snow data indicates no snow: Retrieve soil moisture, do not flag. 
Snow data indicates snow: Flag, do not retrieve soil moisture. 

 
Precipitation flag: Presence of heavy rainfall during SMAP data acquisition may adversely affect 
the TB and σ measurements. The precipitation data from GPM or from the model nowcast/forecast 
will be used to flag the concern 9 km grid cell. L2_SM_AP retrievals will be performed irrespective 
of rainfall; however, the grid cell will be flagged in case of the presence of precipitation. 
 
 
VWC flag: L2_SM_AP retrievals are conducted for all the locations irrespective of VWC level. The 
grid cells are flagged for VWC greater than 5 kg/m2. 
 
Urban area flag: Presence of urban area adversely affects the L-band radiometric measurements. 
The presence of urban area within the SMAP measurement is likely to bias soil moisture retrievals. 
Currently the L2_SM_AP processor flag the regions having urban area as follows: 
 

Urban fraction is 0.00 – 0.25: Retrieve soil moisture, do not flag. 
Water fraction is 0.25 – 0.50: Flag and retrieve soil moisture.  
Water fraction is 0.55 – 1.00: Flag but do not retrieve soil moisture. 

 
Mountain area flag:  Statistics of mountainous regions that initiate flags and operational decisions 
during L2_SM_AP processing is TBD. There are many options and thresholds that are considered 
for the L2_SM_AP product: the range of elevation, the variance of elevation, and combination of 
variance of slope and elevation parameters. For QC related to mountainous regions, the L2_SM_AP 
processing will be consistent with the L2_SM_A and L2_SM_P processing. Currently the 
L2_SM_AP processor flags the region where DEM standard deviation is more than 200 meters, 
however, the retrieval is performed for all locations.  
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5.5 Numerical Computation and Storage Consideration 

The expected computational requirements of L2_SM_AP activities are moderate. With the 
present technology in computing and archiving of electronic files, it can easily accommodate the 
L2_SM_AP processing. The maximum computational demand (processor time and cache memory) 
is anticipated during ingestion of L2_SM_A data into the algorithm. With the current infrastructure 
at Science Data System (SDS), no bottlenecks are expected while running the L2_SM_AP software 
PGE for the SMAP product. Preliminary studies calculated a data volume of 89 MB for the half 
orbit granule of L2_SM_AP product. This make a yearly volume of 478 GB based on ~14.5/day 
half orbit granules. This is only 0.25% of total storage requirements of SMAP science related data 
and products.  

 

5.6 Programming Consideration 

Processing and operational codes for L2_SM_AP algorithm is written in Fortran to make it 
consistent with other algorithms. This facilitates inter-algorithm functioning of switches, data and 
information transactions. Programming of L2_SM_AP algorithm adheres to standard coding 
specifications to ensure the consistent, maintainable, and readable code deliveries within the SMAP 
SDS. Fortran programming of L2_SM_AP algorithm also meets the necessary requirements of 
language compliance, predictable execution, and code clarity. Adherence to these standards by 
programs allows efficient integration of SDS software components (Interfaces) and simplify the 
Algorithm-to-PGE development process. The L2_SM_AP Fortran code contains comments and 
version control information to track the changes and streamline the development of software. A 
software specification document will be developed for documentation of all the source codes.  

 
 

5.7 Exception Handling  

To obtain the L2_SM_AP product from SMAP observations involves many aspects of 
product generation. This includes instrument performance, satellite data downlink, data 
preprocessing activities, quality of data (e.g., data drop-off), preceding algorithm performance, 
availability of ancillary data, and computing related resources. Due to these activities, exceptions 
are expected while operating the L2_SM_AP algorithm on the SDS testbed. The development of 
L2_SM_AP software also includes identification of expected exceptions. The list of expected 
exceptions is TBD. However, the formulation and computer coding of L2_SM_AP software will be 
made robust to withstand the expected exceptions.    

 

5.8 Interface Assumptions 

The L2_SM_AP baseline and option algorithms will generate data based on the input of 
L2_SM_P (water bodies corrected brightness temperature fields) and the L2_SM_A (radar 
backscatter cross-section) products. Masks and flags contained in the foundation products will be 
propagated in the L2_SM_AP. The masks include latency, bad or missing data, inland water, coasts, 
vegetation and terrain flags, frozen ground flag, etc. In order to maintain consistency and streamline 
production, any additional masks that may be required for the L2_SM_AP product will be requested 
to be included in the parent SMAP data product.  
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5.9   Compositing L2_SM_AP to L3_SM_A/P 

On a daily basis there will be ~14.5 files of L2_SM_AP product that corresponds to 
descending pass (half orbit granule/swath) of SMAP. L3_SM_A/P is a daily global composite of 
these 14.5 L2_SM_AP product files. Global compositing of L2_SM_AP files have two aspects; 1) 
with no overlap of swaths, and 2) with overlap of swaths.   

 
With no overlap of swaths: Latitudes between 60˚N and 60˚S will have this characteristic. The 
compositing process is just mapping the L2_SM_AP file values to the global 9 km Earth fixed grid 
based on the lat-lon or grid-id information. It is also obvious that in such situation there will be only 
one value per cell.  
 
With overlap of swaths: This situation will arise in polar latitudes from 60˚N to 90˚N and 60˚S to 
90˚S. For each L2_SM_AP product file the compositing process is mapping the values to the global 
9 km Earth fixed grid based on the lat-lon or grid-id. In this scenario, in a particular 9 km grid cell 
there are possibilities of having more than one value. The selection of final soil moisture value from 
this array is TBD. Various options like average value, first value, last value, and the value closest to 
6:00 AM local time are being explored. Future updates of this ATBD will mention the final 
selection procedure and its rationale. However, based on the preliminary consideration, the value 
closest to 6:00 AM local time is used currently to produce L3_SM_AP product file. 
 
 

5.10 Latency in L2_SM_AP Product 

The L2_SM_AP product has to meet the latency requirement of 24 hours from the time of 
data acquisition by the satellite. The latency of the L2_SM_AP product is mainly governed by the 
latencies involved in the input data streams (L2_SM_A and L2_SM_P) and the dynamic ancillary 
data (surface temperature). To ensure that the L2_SM_AP product meets the latency requirement 
the following criteria are required in operational processing at the SMAP SDS. 

 
a) Processing of L2_SM_A by ~22 hours from the time of data acquisition by the satellite. 
b) Processing of L2_SM_P by ~22 hours from the time of data acquisition by the satellite. 
c) Availability of dynamic ancillary data by at most 15 hours from the time of data 

acquisition by the satellite. 
 
With the current computing capability at the SMAP SDS and using only one node, the operational 
processing of the L2_SM_AP  algorithm to product an output file is accomplished in less than 2 
minutes, provided all the necessary input data and ancillary data are available.  
 
 
 

6 PRODUCTS SPECIFICATIONS 

The L2_SM_AP product contains relevant outputs from the current baseline algorithm 
(Section 3.2), dynamic ancillary data used in soil moisture retrieval, and metadata information. 
Table 9 provides the fields contained in the L2_SM_AP product file. The primary data field of the 
L2_SM_AP product is the near surface soil moisture [cm3/cm3] at 9 km resolution (EASE grid). For 
completeness, disaggregated TB from the current baseline algorithm, averaged radar backscatter at 9 
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km, dynamic ancillary inputs and algorithm prior and posterior parameters are included. 
Geolocation information (Latitude, Longitude, and EASE grid-id) and UTC time of the spacecraft 
overpass are also included for all the grid cells. The L2_SM_AP product file comprises only those 
EASE grid cells of the descending pass where relevant data are present; specifically the spacecraft 
observations over open water are ignored. With the current design of the L2_SM_AP product file, 
the contents can be easily mapped on to the 9 km fixed EASE grid cells using the geolocation 
information present in the product file. Complete details about the contents are provided in the 
L2_SM_AP product specification document. The metadata and the populated product fields will be 
packaged in HDF file format and will be made available to public from the NASA DAAC at 
National Snow and Ice Data Center (NSIDC). 
 
 
 
 
 
Table 9: L2_SM_AP product file data fields that contain geolocation information, disaggregated TB, 

aggregated 𝜎, geophysical data fields, QC data, and dynamic ancillary data. 
 

Data Elements Data type Units 

Latitude real degrees 

Longitude real degrees 

EASE_row_index integer (-) 

EASE_column_index integer (-) 

Distance_from_nadir real meters 

Spacecraft_overpass_time_utc string (-) 

Spacecraft_overpass_time_seconds real seconds 

Tb_v_disaggregated real Kelvins 

Tb_h_disaggregated real Kelvins 

Sigma0_hh_aggregated real dB 

Sigma0_vv_aggregated real dB  

Sigma0_hv_aggregated real dB 

Soil_moisture real cm3/cm3 

Soil_moisture_std_dev real cm3/cm3 

Retrieval_qual_flag bit flag (-) 

Surface_flag bit flag (-) 

Surface_temperature real ˚C 

Freeze_thaw_fraction real (-) 

Vegetation_opacity real (-) 

Water_body_fraction real (-) 

Vegetation_type enum (-) 

Radar_vegetation_index real (-) 

Bare_soil_roughness_retrieved real m 

Posterior_alpha real Kelvins 
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Posterior_beta real Kelvins /dB 

Posterior_gamma real dB/dB 

Prior_alpha real Kelvins 

Prior_beta real Kelvins /dB 

Prior_gamma real dB/dB 

Retrieval_param_flag bit flag (-) 
 
 
Description of data elements (Table 9) in L2_SM_AP product file: 
 

1) Latitude: Latitude of the center of the EASE based grid cell. 
2) Longitude: Longitude of the center of the EASE based grid cell. 
3) EASE_row_index: The row index of the 9 km EASE grid cell that contains the associated 

data. 
4) EASE_column_index: The column index of the 9 km EASE grid cell that contains the 

associated data. 
5) Distance_from_nadir: The distance from the center of the 9 km EASE grid cell to the 

spacecraft's sub-nadir track on the Earth's surface. 
6) Spacecraft_overpass_time_utc: Time of spacecraft overpass in UTC.  The spacecraft time is 

relative to the 36 km EASE grid cell that contains each 9 km EASE grid cell represented in 
this data product. 

7) Spacecraft_overpass_time_seconds: Number of seconds since a specified epoch that 
represents the spacecraft overpass relative to the 36 km EASE grid cell that contains each 9 
km EASE grid cell represented in this data product. 

8) Tb_v_disaggregated: Vertical polarization brightness temperature adjusted for the presence 
of water bodies and disaggregated from the 36 km EASE grid cells into 9 km EASE grid 
cells. 

9) Tb_h_disaggregated: Horizontal polarization brightness temperature adjusted for the 
presence of water bodies and disaggregated from the 36 km EASE grid cells into 9 km 
EASE grid cells. 

10) Sigma0_hh_aggregated: The outcome of aggregating a set of 3 km horizontal polarization 
radar backscatter measurements into a 9 km EASE grid cell. 

11) Sigma0_vv_aggregated: The outcome of aggregating a set of 3 km vertical polarization 
radar backscatter measurements into a 9 km EASE grid cell. 

12) Sigma0_hv_aggregated: The outcome of aggregating a set of 3 km cross-polarized radar 
backscatter measurements into a 9 km EASE grid cell. 

13) Soil_moisture: Representative soil moisture measurement for the 9 km Earth based grid cell. 
14) Soil_moisture_std_dev: Standard deviation of soil moisture measure for the 9km Earth 

based grid cell. 
15) Retrieval_qual_flag: Bit flags that record the conditions and the quality of the retrieval 

algorithms that generate soil moisture for the grid cell. 
16) Surface_flag: Bit flags that record ambient surface conditions for the grid cell. 
17) Surface_temperature: Temperature at land surface based on a geophysical model (e.g., 

GMAO-MERRA). 
18) Freeze_thaw_fraction: Fraction of the 9 km grid cell that is denoted as frozen.  Based on 

binary flag that specifies freeze thaw conditions in each of the component 3 km grid cells. 
19) Vegetation_opacity: The measured opacity of the vegetation in the grid cell. 
20) Water_body_fraction: Fraction of the area of 9 km grid cell that is a permanent or transient 

water body.  Derived from the DEM and radar processing. 
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21) Vegetation_type: An enumerated type that specifies the predominant surface vegetation 
found in the grid cell. 

22) Radar_vegetation_index: Vegetation index derived from radar backscatter. 
23) Bare_soil_roughness: Retrieved soil roughness provided by the active soil moisture 

algorithm. 
24) Posterior_alpha: Alpha parameter used in the Active/Passive retrieval algorithm for the 

corresponding EASE  grid cell and half orbit. 
25) Posterior_beta: Beta parameter used in the Active/Passive retrieval algorithm for the 

corresponding EASE grid cell and half orbit. 
26) Posterior_gamma: Gamma parameter used in the Active/Passive retrieval algorithm for the 

corresponding EASE grid cell half orbit. 
27) Prior_alpha: Alpha parameter used in the Active/Passive retrieval algorithm for the 

corresponding EASE  grid cell at the most recent prior instance when the grid cell was 
processed. 

28) Prior_beta: Beta parameter used in the Active/Passive retrieval algorithm for the 
corresponding EASE  grid cell at the most recent prior instance when the grid cell was 
processed. 

29) Prior_gamma: Gamma parameter used in the Active/Passive retrieval algorithm for the 
corresponding EASE  grid cell at the most recent prior instance when the grid cell was 
processed. 

30) Retrieval_param_flag: Bit flags that record recent updates to algorithmic parameters. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



  69 

7 REFERENCES 

[1]      E. G.  Njoku, T. Jackson, V. Lakshmi, T. K. Chan, and S. Nghiem, “Soil moisture  
           retrieval from AMSR-E,” IEEE Trans. Geosci. Remote Sens., vol. 41, no. 2, pp. 215– 
           229, Feb. 2003 
 
[2]     Y. H. Kerr et al., “Soil moisture retrieval from space: the Soil Moisture and Ocean Salinity 

(SMOS) mission,” IEEE Trans. Geosci. Remote Sens., vol. 39, no. 8, pp. 1729–1735, Aug. 
2001. 

 
[3]  National Research Council, “Earth Science and Applications from Space: National 

Imperatives for the Next Decade and Beyond,” pp. 400, 2007. 
 
[4]       D. Entekhabi, E. Njoku, P. Houser, M. Spencer, T. Doiron, J. Smith, R. Girard, S. Belair, W. 

Crow, T. Jackson, Y. Kerr, J. Kimball, R. Koster, K. McDonald, P. O'Neill, T. Pultz, S. 
Running, J. C. Shi, E. Wood, and J. van Zyl, “The Hydrosphere State (HYDROS) mission 
concept: An Earth system pathfinder for global mapping of soil moisture and land 
freeze/thaw,” IEEE Trans. on Geosci. and Remote Sensing Trans. on Geosci. and Remote 
Sensing, vol. 42(10), pp. 2184-2195, 2004. 

 
[5]  D.	  Entekhabi,	  E.	  G.	  Njoku,	  P.	  E.	  O’Neill,	  K.	  H.	  Kellogg,	  W.	  T.	  Crow,	  W.	  N.	  Edelstein,	   J.	  K.	  

Entin,	  S.	  D.	  Goodman,	  T.	  J.	  Jackson,	  J.	  Johnson,	  J.	  Kimball,	  J.	  R.	  Piepmeier,	  R.	  D.	  Koster,	  N.	  
Martin,	  K.	  C.	  McDonald,	  M.	  Moghaddam,	  S.	  Moran,	  R.	  Reichle,	  J.	  C.	  Shi,	  M.	  W.	  Spencer,	  S.	  
W.	  Thurman,	  L.	  Tsang,	  and	  J.	  V.	  Zyl, “The Soil Moisture Active Passive (SMAP) Mission,” 
Proceedings of the IEEE, vol. 98,  704-716, 2010. 

 
[6]  E. G. Njoku, and D. Entekhabi, “Passive microwave remote sensing of soil moisture,” J. 

Hydrol., vol. 184, 101-129, 1996. 
 
[7] F. T. Ulaby, P. Dubois, and J. V. Zyl, “Radar mapping of surface soil moisture," J. Hydrol., 

vol. 184, 57-84, 1996. 
 
[8] G. Kim, and A. P. Barros, “Space-time characterization of soil moisture from passive 

microwave remotely sensed imagery and ancillary data,” Remote Sens. Environ., vol. 81, 
pp. 393–403, 2002. 

 
[9]     G. Kim, and A. P. Barros, “Downscaling of remotely sensed soil moisture with a modified 

fractal interpolation method using contraction mapping and ancillary data,” Remote Sens. 
Environ., vol. 83, pp. 400–413, 2002. 

 
[10]     N. S. Chauhan, S. Miller, and P Ardanuy, “Space borne soil moisture estimation at high 

resolution: A microwave-optical/IR synergistic approach,” Int. J. Remote Sens., vol. 24, no. 
22, pp. 4599–4622, 2003. 

 
[11]     R. H. Reichle, D. Entekhabi, and D. b. McLaughlin, “Downscaling of radio brightness 

measurements for soil moisture estimation: A four dimensional variational data assimilation 
approach,” Water Resources Res., vol. 37, no. 9, pp. 2353–2364, 2001. 

 



  70 

[12]     O. Merlin, J. P. Walker, A. Chehbouni, and Yann Kerr, “Towards deterministic downscaling 
of SMAO soil moisture using MODIS derived soil evaporative efficiency,” Remote Sens. 
Environ., vol. 112, pp. 3935–3946, 2008. 

 
[13]    U. Narayan, V. Lakshmi, and T. J. Jackson, “High resoluiton estimation of soil moisture 

using L-band radiometer and radar observations made during the SMEX02 experiments,” 
IEEE Trans. Geosci. Remote Sens., vol. 44, 1545-1554, 2006. 

 
[14] X. Zhan, P. R. Houser, J. P. Walker, and W. T. Crow, “A Method or Retrieving High-

Resolution Surface Soil Moisture From Hydros L-Band Radiometer and Radar 
Observations,” IEEE Trans. Geosci. Remote Sens., vol. 44, 1534-1544, 2006. 

 
[15] Y. Kim, and J. van Zyl, “A Time Series Approach to Estimate Soil Moisture Using 

Polarimetric Radar Data,” IEEE Trans. Geosci. Remote Sens. vol. 47, 2519-2527, 2009. 
 
[16] M. Piles, D. Entekhabi, and A. Camps, “A Change Detection Algorithm for Retrieving 

High Resolution Soil Moisture from SMAP Radar and Radiometer Observations,” IEEE 
Trans. Geosci. Remote Sens., vol. 47, 4125-4131, 2009.  

 
[17] N. N. Das, D. Entekhabi, and E. G. Njoku, “An Algorithm for merging SMAP radiometer 

and radar data for high resolution soil moisture retrieval,” IEEE Trans. Geosci. Remote 
Sens., vol. 9, 1504-1512, 2011.  

 
[18] N. N. Das, D. Entekhabi, E. G. Njoku, J. Johnston, J. C. Shi, and A. Colliander, “Tests of 

the SMAP Combined Radar and Radiometer Brightness Temperature Disaggregation 
Algorithm Using Airborne Field Campaign Observations,” IEEE Trans. Geosci. Remote 
Sens., In review.  

 
[19]     Ulaby, F. T., R. K. Moore and A. K. Fung, Microwave Remote Sensing: Active and Passive, 

3, Volume Scattering and Emission Theory, Advanced Systems and Applications, Reading, 
MA, Addison-Wesley, 1986. 

 
[20]     Dobson, C.M. and Ulaby, F.T., “Preliminary evaluation of the SIR-B response to soil 

moisture, surface roughness, and crop canopy cover”, IEEE Trans. Geosci. Remote Sens., 
GE-24(4), 517-526, 1986. 

 
[21]     T. J. Jackson, T. J. Schmugge, and J. R. Wang, “Passive microwave sensing of soil moisture  

under vegetation canopies,” Water Resources Research, vol. 18, pp.1137-1142, 1982. 
 
[22]    T. J. Jackson, and T. J. Schmugge, “Vegetation effects on the microwave emission from 

soils,” Rem. Sens. Environ., vol. 36, pp. 203-212, 1991. 
 
[23] P. E. O’Neill, R. H. Lang, M. Kurum, K. R. Carver, and C. Utku, “Multisensor microwave 

remote sensing of NASA’s combined radar/radiometer (ComRAD) system,” in Proc. 
MicroRad’06, San Juan, Puerto Rico, pp. 50–54, Feb. 2006. 

 
 
  



  71 

8 GLOSSARY 

(Under development) 

ALGORITHM.  (1) Software delivered by a science investigator to be used as the primary tool in 
the generation of science products.  The term includes executable code, source code, job control 
scripts, as well as documentation.  (2) A prescription for the calculation of a quantity; used to derive 
geophysical properties from observations and to facilitate calculation of state variables in models. 

 
ANCILLARY DATA.  Data other than instrument data required to perform an instrument's data 
processing.  They include orbit data, attitude data, time information, spacecraft engineering data, 
calibration data, data quality information, data from other instruments (spaceborne, airborne, 
ground-based) and models. 
 
CALIBRATION.  (1) The activities involved in adjusting an instrument to be intrinsically accurate, 
either before or after launch (i.e., “instrument calibration”).  (2) The process of collecting 
instrument characterization information (scale, offset, nonlinearity, operational, and environmental 
effects), using either laboratory standards, field standards, or modeling, which is used to interpret 
instrument measurements (i.e., “data calibration”). 
 


