The impact of SMAP data assimilation on Tropical Cyclone landfall predictions

SMAP Science Team Meeting
June 9, 2021

Jana Kolassa1,2, Manisha Ganeshan 3,4, Erica McGrath-Spangler1,3, Rolf Reichle1, Oreste Reale1,3

(1) Global Modeling and Assimilation Office, NASA GSFC
(2) Science Systems and Applications, Inc.
(3) Universities Space Research Association
(4) Climate and Radiation Laboratory, NASA GSFC
Can the assimilation of SMAP observations into a global numerical weather prediction (NWP) model improve the prediction of tropical cyclone (TC) evolution prior to and after landfall?
Can the assimilation of SMAP observations into a global numerical weather prediction (NWP) model improve the prediction of tropical cyclone (TC) evolution prior to and after landfall?

Motivation:
- For forecasting a TC approaching land, or after landfall, land surface initial conditions are significantly more important
 - Very wet land surface → help to sustain or re-intensify TC ("Brown Ocean Effect")
 - Dry land surface → faster TC dissipation
 - Soil moisture gradients → different TC over-land track
- SMAP data assimilation → better land surface initial conditions → better TC forecasts → societal benefit

Figure 3: Accumulated precipitation and 50mm accumulated precipitation from TC Idai for March 16-17, 2019. Figure again demonstrates the dramatic changes in precipitation [mm] and 50mm accumulated precipitation as a result of the land surface conditions. The figure shows the simulated precipitation produced by Idai during the 2 days when Idai was stationary near Madagascar, in the two configurations (CNTRL and DRY), compared to observations from the NASA Integrated Multi-satellitE Retrievals for GPM (IMERG, GMAO). The figure again demonstrates the dramatic changes in precipitation [mm] and 50mm accumulated precipitation.
Observing System Experiment to determine the potential of SMAP data assimilation to improve forecasts of tropical cyclone structure and precipitation surrounding landfall.

Control:
- Forecasts of TC from analysis constrained by standard suite of atmospheric observations

Experiment:
- Additional constraint through SMAP Tb observations

Evaluation:
- Combination of global skill metrics, regional tailored metrics and phenomenological approaches to evaluate impact on TC forecast skill
The Land-Atmosphere Data Assimilation System
Land-Atmosphere Data Assimilation System (LADAS):

- Assimilates SMAP Tbs every 3 hours
- Catchment Land Surface Model
- Based on L4 SM system (assimilation window, bias correction approach, RTM)

Land surface states and fluxes constrain atmospheric states and fluxes
→ Changes made through SMAP DA feed back to the atmosphere

Land-Atmosphere Data Assimilation System (LADAS):

- Assimilates SMAP Tbs every 3 hours
- Catchment Land Surface Model
- Based on L4 SM system (assimilation window, bias correction approach, RTM)

- Land surface states and fluxes constrain atmospheric states and fluxes
 → Changes made through SMAP DA feed back to the atmosphere

Land-Atmosphere Data Assimilation System (LADAS):

More information on LADAS in SMAP ST presentation by R. Reichle on July 7th, 2021

- Based on L4 SM system (assimilation window, bias correction approach, RTM)
- Changes made through SMAP DA feedback to the atmosphere

Case Study: Tropical Cyclone Idai (March 4 – March 16, 2019)
Case Study: Tropical Cyclone Idai

First landfall on March 4, 2019
Second landfall on March 15, 2019
Final dissipation

TC genesis
Case Study: Tropical Cyclone Idai

Vorticity Mar 04 12z

Streamlines show TC circulation

Vorticity Mar 11 0z

Vorticity Mar 15 0z

Vertically integrated vorticity [kg m$^{-2}$ s$^{-1}$]

SM anomaly (SMAP-clim) Mar 04 12z

SM anomaly (SMAP-clim) Mar 11 0z

SM anomaly (SMAP-clim) Mar 15 0z

Surface soil moisture [m3 m$^{-3}$]

GMAO

gmao.gsfc.nasa.gov
What can SMAP add?

- The SMAP DA run captures the wetter than normal conditions better than a model run that is not constrained by SMAP
 → By assimilating SMAP we could improve the forecast of Idai’s behavior
Ongoing work:

- Setting up and running OSE control experiment for Idai
- Setting up and running OSE DA experiment for Idai
 → Assess the impact SMAP DA has on our ability to predict Idai’s behavior

Future work:

- Repeat Idai experiment for a range of TC case studies
 → Determine how large scale forcing may modulate the impact of SMAP DA
 → *Determine the impact of SMAP DA on the overall model forecast skill*
Thank you!