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1Geostatistical data fusion is an attractive alternative for SM inference in data-driven setting. 

On a daily scale, individual platforms have limitations such as incomplete 

spatial coverage and errors in retrievals.

Data fusion is the process of combining information from heterogeneous sources 

into a single composite picture of the relevant process.

Introduction

On an interpretation-prediction spectrum, physical models derived from the first 

laws of physics lie on one end while Machine Learning algorithms using black-

box models fall on the other.
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Study Area and Data

We propose a data fusion scheme 

combining point and satellite soil moisture 

data for Contiguous US.

Soil moisture data

1) In-situ : USCRN and SCAN stations. 

2) Satellite: SMAP L3 (~ 36 km) 

3) Satellite: SMOS L3 (~ 25 km)

Covariate data

1) Rainfall (4 km): PRISM

2) Soil Texture : SSURGO (1 km)

3) Elevation: SSURGO (1 km)

4) Leaf Area Index: MODIS (500 m)
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𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠 𝑃
Parameters in the 

data and process 

models

[𝑃𝑟𝑜𝑐𝑒𝑠𝑠 𝑝𝑜𝑖𝑛𝑡 |P]
Covariate-driven 

Gaussian Process 

(GEOSTATISCAL 

PROCESS)

[𝑂𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛𝑠|𝑃𝑟𝑜𝑐𝑒𝑠𝑠, 𝑃]
Accounts for change of support 

and errors in observed data

[𝐷𝑎𝑡𝑎, 𝑃𝑟𝑜𝑐𝑒𝑠𝑠, 𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠] = 𝐷𝑎𝑡𝑎 𝑃𝑟𝑜𝑐𝑒𝑠𝑠, 𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠 × 𝑃𝑟𝑜𝑐𝑒𝑠𝑠 𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠 × [𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠]

Spatio-temporal Hierarchical Model

14

SM 𝑠 = 𝜇 𝑠 + 𝑒(𝑠)

deterministic mean function spatio-temporally dependent stochastic process

𝑒 . ∼ 𝐺𝑃(0, 𝐶)
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𝑒 . = Stochastic process governing spatial 

dependence

𝑋 𝑠 = vector of controls (LAI, rain, clay,  

elevation) at point 𝑠 (𝑥, 𝑦, 𝑡).
𝐶𝑗 = 𝑗𝑡ℎ isotropic spacetime covariance 

function.           

𝑤𝑗(𝑠1) = weighting function governing the            

effect of controls on 𝐶𝑗
𝑀 = number of isotropic covariance functions

Mean and covariance of SM

The  structure of the mean function is selected based on 

exploratory analysis of soil moisture data.

The covariance function is modeled such that the covariance 

between any two locations is a function of the underlying 

covariate heterogeneity.
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Data model for pixel 𝑨𝒊: 𝒛𝒋 𝑨𝒊 = 𝑺𝑴 𝑨𝒊 + 𝛿(𝑨𝒊) + 𝜿(𝑨𝒊) 𝑺𝑴 𝑨𝒊 + 𝝐(𝑨𝒊)

Process model at point scale: SM . ∼ 𝑮𝑷(𝝁, 𝑪)

Process at a spatial support 𝑨𝒊:

Stochastic integral

𝝁 𝑨𝒊 =
1

|𝑨𝒊|
න
𝑨𝒊

𝝁 𝒔 𝑑𝑠

𝑪 𝑨i, 𝑨k =
1

𝑨i |𝑨k|
න

𝑨i

න
𝑨k

𝑪 𝒔1, 𝒔2 𝑑𝑠1𝑑𝑠2

Numerical approximation

𝑺𝑴 𝑨𝒊 =
1

𝒏𝑨𝒊


𝑔𝑙∈ 𝒢∩𝑨𝒊

𝑆𝑀(𝑔𝑙)

= 𝒉𝑨𝒊𝑺𝑴𝒢𝑖

𝑺𝑴 𝑨𝒊 =
1

|𝑨𝒊|
𝑨𝒊

𝑺𝑴 𝒔 𝑑𝑠
not always available in closed form

𝒏𝑨𝒊 = number of grid points inside 𝑨𝒊 = 𝒢 ∩ 𝑨𝒊

𝒉𝑨𝒊 = vector of length 𝒏𝑨𝒊 = ( ൗ𝟏 𝒏𝑨𝒊
, … , ൗ𝟏 𝒏𝑨𝒊

)

𝑺𝑴𝒢𝒊 = vector of length 𝒏𝑨𝒊 = 𝑆𝑀 𝑔𝑙 : 𝑔𝑙 ∈ 𝒢 ∩ 𝑨𝒊

𝝁 𝑨𝒊 = 𝒉𝑨𝒊𝝁𝑨𝒊

𝑪 𝑨i, 𝑨k = 𝒉𝑨𝒊𝑪(𝑺𝑴𝒢𝑖
, 𝑺𝑴𝒢𝑘)𝒉𝑨𝒌

Equal-spaced numerical grid 𝒢

25 observations at 4 different 

supports from 4 platforms.

Spatio-temporal Data Fusion Model

Likelihood estimation consists of simulating and inverting the covariance 

matrix which scales quadratically with the number of assumed grid points 

and cubically with the number of observations.

Computationally infeasible for big 

datasets and vast study domains
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መ𝑓(𝑧(𝐴100)|𝑧 𝐴99 , … , 𝑧 𝐴1 )

𝑓(𝑧(𝐴100)|𝑧 𝐴99 , … , 𝑧 𝐴1 )𝑓(𝑧(𝐴2)|𝑧 𝐴1 ) 𝑓(𝑧(𝐴3)|𝑧 𝐴2 , 𝑧 𝐴1 ) 𝑓(𝑧(𝐴139)|𝑧 𝐴138 , … , 𝑧 𝐴1 ) 𝑓(𝑧(𝐴140)|𝑧 𝐴139 , … , 𝑧 𝐴1 )

መ𝑓(𝑧(𝐴2)|𝑧 𝐴1 ) መ𝑓(𝑧(𝐴3)|𝑧 𝐴2 , 𝑧 𝐴1 ) መ𝑓(𝑧(𝐴139)|𝑧 𝐴138 , … , 𝑧 𝐴1 ) መ𝑓(𝑧(𝐴140)|𝑧 𝐴139 , … , 𝑧 𝐴1 )

Multiscale approximation for Big Data

Likelihood of fusion model =

Hypothetical Example 

Data

1) Areal data 𝑅1: 64 pixels (Green)

2) Areal data 𝑅2: 36 pixels (Purple)

3) Point data 𝑃1: 40 (Blue triangles)

Total data pixels  = 𝒜 = 𝐴1, … , 𝐴𝑛 ; 𝑛 = 140

Kathuria, D., Mohanty, B. P. and Katzfuss, M. (2021). A Multiscale Spatio-Temporal Big Data Fusion Algorithm from Point to Satellite Footprint Scales. (under review RSE).

Exact Likelihood:

Approximate Likelihood: Here, 𝑚 = 20

For 15-day Contiguous US analysis

𝑛 = 100, 386
𝑛𝒢 = 1,500,000

𝒪 𝑛3 + 𝒪(𝑛𝒢
2)Cost of computation = 
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POINT SCALE

Multiscale predictions and forecasts
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SMAP/SENTINEL-1 SM 

(~ 3 km)

”Observed” Period ”Forecast” Period

For most of the days the soil moisture predictions 

agree well with the SMAP/Sentinel-1 product 

outperforming the base SMAP product even for 

the forecast period.

Multiscale predictions and forecasts

SMAP/Sentinel-1 SM (v/v)

SMAP/Sentinel-1 SM (v/v)
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SMAP and SMOS

Multiscale predictions and forecasts

Soil Moisture Forecasts- July 21

The predictions are accompanied by prediction 

uncertainty.
Five-day forecasts of SM have 

satisfactory accuracy.

SM Predictions (v/v) SM Prediction Uncertainty 
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Effect of covariates on soil moisture

The mean soil moisture is affected by antecedent 

rainfall, vegetation and elevation.

The spatial covariance of soil moisture is affected 

by vegetation, rainfall, percent clay and elevation.

Kathuria, D., Mohanty, B. P. and Katzfuss, M. (2021). A Multiscale Spatio-Temporal Big Data Fusion Algorithm from Point to Satellite Footprint Scales. (under review RSE).

The temporal covariance was not affected by the 

chosen covariates in the analyzed 15-day data. 

Longer temporal data may be required.
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Effect of covariates on soil moisture

The mean soil moisture is affected by antecedent 

rainfall, vegetation and elevation.

The spatial covariance of soil moisture is affected 

by vegetation, rainfall, percent clay and elevation.

The spatial covariance/correlation exhibits non-

stationary behavior across CONUS driven by 

physical controls.

Kathuria, D., Mohanty, B. P. and Katzfuss, M. (2021). A Multiscale Spatio-Temporal Big Data Fusion Algorithm from Point to Satellite Footprint Scales. (under review RSE).

The temporal covariance was not affected by the 

chosen covariates in the analyzed 15-day data. 

Longer temporal data may be required.
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Conclusions

We propose a novel geostatistical framework for fusing multiscale Big Data.

We apply the fusion scheme to combine point and satellite soil moisture data for CONUS.

We quantify the effects of physical controls on soil moisture distribution.

We validate soil moisture predictions and forecasts across multiple scales.

The proposed algorithm is general and can be used to fuse other environmental variables.
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