Merging SMAP and CYGNSS observations to create a downscaled soil moisture product

> Liza Wernicke (CU Boulder) Clara Chew (UCAR) & Eric Small (CU Boulder)

Motivation

- SMAP's original plan included a downscaled soil moisture product using SMAP radar
- Our goal: combine coarse scale SMAP brightness temperatures and fine scale CYGNSS reflectivities to develop a downscaled soil moisture product

Average values for 3-4/2020 Yuma, AZ

Google Earth Map

Cyclone Global Navigation Satellite System (CYGNSS)

- 8 CYGNSS observatories with Lband bistatic radar receivers
- Each observatory can measure 4 GPS signals at a time

(Ruf et al., 2012; Chew & Small, 2018)

Chew & Small (2020)

CYGNSS data

- Low inclination, low Earth orbits
 - ± 38° latitude
- Minimum spatial footprints over land of ~3.5x0.5km
- Global repeat period of ~8-14 days at 3km resolution

CYGNSS data

- Original data are Delay Doppler Maps (DDMs)
- Peak power signal from each DDM (specular point) is located and converted to dB
- Approximate reflectivity is calculated using the bistatic radar equation

Brightness Temp (Tb) algorithm

$$Tb_{\nu,M} = Tb_{\nu,C} + \{\beta \times \lfloor \Gamma_M - \Gamma_C \rfloor\}$$

Adapted for CYGNSS data from original SMAP radiometer/radar downscaling algorithm

Brightness Temp (Tb) algorithm

 $Tb_{\nu,M} = Tb_{\nu,C} + \{\beta \times [\Gamma_M - \Gamma_C]\}$

7

Brightness Temp (Tb) algorithm

9

Brightness Temp (Tb) algorithm

$$Tb_{\nu,M} = Tb_{\nu,C} + \{\beta \times [\Gamma_M - \Gamma_C]\}$$

β (slope) is the linear relationship between SMAP Tb and CYGNSS reflectivity
Median for India: -2.763 K/dB

10

Brightness Temp (Tb) algorithm

Average values for 3-4/2020 Yuma, AZ

Google Earth Map

Google Earth Map

Average values for 3-4/2020 Yuma, AZ

17

Average values for 3-4/2020 Yuma, AZ

Tb algorithm considerations and complications

- **1.** Calculating β
 - Spatial and temporal variation
- 2. Edge effect
 - Spatial varying β
- 3. Sparse daily CYGNSS observations create sparse daily 3km maps
 - Temporal and spatial resolution of final product

SM product

Analyze which SMAP algorithm and ancillary datasets will optimize accuracy of final SM product

References

Chew, C. (2021). Spatial interpolation based on previously-observed behavior: a framework for interpolating spaceborne GNSS-R data from CYGNSS. *Journal of Spatial Science*, 1-14.

Chew, C. C., & Small, E. E. (2018). Soil moisture sensing using spaceborne GNSS reflections: Comparison of CYGNSS reflectivity to SMAP soil moisture. *Geophysical Research Letters*, *45*(9), 4049-4057.

Chew, C., & Small, E. (2020). Description of the ucar/cu soil moisture product. *Remote Sensing*, 12(10), 1558.

Ruf, C. S., Gleason, S., Jelenak, Z., Katzberg, S., Ridley, A., Rose, R., ... & Zavorotny, V. (2012, July). The CYGNSS nanosatellite constellation hurricane mission. In 2012 IEEE International Geoscience and Remote Sensing Symposium (pp. 214-216). IEEE.