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@ Motivation 7

e Radio frequency interference (RFI) remains a
challenge especially with the advent of wideband
receivers and spectrometers with interest in
spectrum outside the designated bands

* Large amounts of accumulated data necessary for
current techniques which require post processing

* Deep learning can be used to detect RFl in data
represented as spectrograms, suitable for
wideband receivers
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* Deep learning is a type of machine learning
* Machine learning manually extract relevant features in

an image

@ Deep Learning — How Does It Work

* Deep learning, feed raw images directly to a deep neural
network that learns features automatically

* Deep learning requires 100s of thousands or millions of
images for best results, computationally intensive
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@ Transfer Learning

Flight Center

* Transfer learning uses an existing network trained
on millions of images

* Pre-trained network fine-tuned, learned features
transferred to new task using a smaller number of
training images
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Experiments

Used pre-trained networks o Object is to cIassify

Alexnet, GoogleNet, ResNet-101 .
T _ Image as RFl or no RFI
Training input 2507 images of

RFI, 2507 images of no RFI

No RFI cases taken over
Antarctica, the ocean and
Australia with the conditions that
RFI level < 2 K and number of
pixels flagged < 50 %

No RFl examples

RFI cases taken from all parts of
the globe, high level, low level,
different types, RFI > 5 K or > 50%
of spectrogram blanked

80 % of data used for training, 20
% validation

RFI examples
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@ Experiments

Flight Center

* Training performed twice on each network

* Experiment 1: RFl free images contained coastlines
* Experiment 2: RFI free images excluded coastlines

Coastline Coastline
’ Excluding coastlines

in training images
can result in false
alarms along the

coasts

Including coastlines
in training images
can result in missed
detections
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@’ Training Results and SMAP
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Agreement

Accuracy |Accuracy | Training Training
1 (%) 2 (%) Time 1 (Hr) |Time 2 (Hr)

m 98.50 96.51 7.73 7.10
AL LA 97.80 98.30 16.21 16.19
TSI 98.60 98.90 31.62 31.00

Europe Orbit Middle East Orbit

Agreement with SMAP | Agreement with SMAP
detection

LU ©7.58 88.31

AlexNet (no coast) 98.85 92.23
GoogleNet 95.89 82.10
96.84 85.03
96.09 85.77

CENGE S IR GLELES I 97.09 88.05
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Results — Europe Pass
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e RFI>5Kor>50% of spectrogram blanked = 4088
.. ® 7407 fps detected by deep learning
* Deep Learning agreement = 3989 or 97.6 %
256 fps detected by deep learning had 10 or less
220 pixels detected by MAXPD, 1.3 %
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1240

200

180

* Red: agree on RFI
) | * Grey: agree no RFI
1 » Blue: DL detects RFI
but SMAP detection
does not
1 *  Yellow: DL does not
detect RFI but SMAP
detection does

1260

1240

4 220

200

190 110 1I2 ] 14 1;3 1I8 ZJO 2I2 24 26 2I8
spring 2021 sV @pd SMAP detection 8
agreement results



Results
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@ Results — Middle East Pass
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Results — Middle East Pass
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Example RFI cases in this orbit
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Conclusion

* Deep Learning has high performance at detecting
RFI localized in time and frequency and lower
performance for broadband RFI

* Classification is highly dependent on input data as
demonstrated by the coastline/no coastline
experiments

* To improve detection especially for broadband RFI
improved ground truth can be used such as
simulated data



