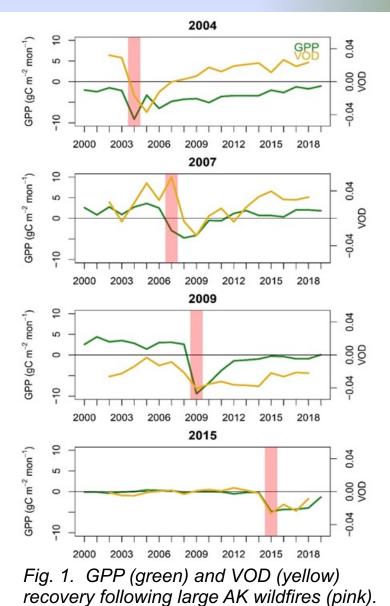
Complementary Satellite Data Clarify Climate and Wildfire Impacts on Ecosystem Productivity in Alaska


Problem: Wildfires are increasing in the borealarctic with global warming, but the impact of fire disturbance on ecosystem productivity is unclear.

Methods: Satellite vegetation observations (MOD15 FPAR, X-band VOD, GOSIF) and other environmental data were used with a diagnostic carbon flux model (SMAP L4C) to analyze ecosystem gross primary productivity (GPP) and canopy biomass (VOD) recovery from large wildfires (>150 km²) in Alaska for 2000-2019.

Findings: The positive GPP trend of ~2.1 Tg C yr⁻¹ in the last two decades was mainly driven by enhanced early season vegetation growth (~1 Tg C yr⁻¹). Warming also promotes wildfires, which reduce productivity after disturbance events; but GPP recovers within 1-3 years following less severe fires (**right**).

Impact: Projected increases in wildfire frequency and severity are expected to reduce ecosystem carbon uptake in the near-term, which may reinforce climate warming.

Madani, Parazoo, Kimball, Reichle, et al., 2021. JGR Biogeosci

