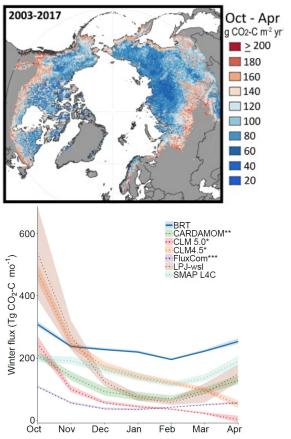
Large Loss of CO₂ in Winter Observed Across the Northern Permafrost Region



Problem: Amplified winter warming in the Arctic is expected to enhance soil CO_2 emissions, but the amount of winter CO_2 loss and its impact on the annual carbon budget is highly uncertain.

Finding: Estimated winter $CO_2 loss (1662 Tg C yr^{-1})$ is larger than growing season CO_2 uptake (1032 Tg C yr^{-1}). Enhanced soil $CO_2 loss$ from winter warming is degrading the northern carbon sink based on flux observations and SMAP L4-C estimates.

Impact: Reduced uncertainty regarding winter CO₂ emissions and their impact on the boreal-Arctic annual carbon budget.

Natali, Watts, Rogers, et al., 2019: Large loss of CO2 in winter observed across the northern permafrost region, *Nature Climate Change*.

Top: Estimated mean winter (Oct-Apr) CO₂ emissions over the northern permafrost zone (2003-2017) derived from machine learning (BRT) upscaling of in situ soil respiration measurements. **Lower**: Comparison of BRT winter CO₂ emissions with other model & observation estimates, including SMAP L4C.