


SMAP Radiance Assimilation Over Land Improves GEOS Medium-Range Forecasts of Near-Surface Air Temperature and Humidity

Problem: Can SMAP brightness temperature (Tb) observations improve forecasts of near-surface atmospheric conditions in global weather prediction?

Finding: Assimilating SMAP Tb observations using a weakly-coupled land analysis in the Goddard Earth Observing System (GEOS) during Jun-Aug 2017 significantly improves forecasts of screen-level air temperature (T2m) and specific humidity (q2m) at lead times up to 5 days, compared to a control (CTRL) experiment without SMAP assimilation.

Impact: Results demonstrate the potential of SMAP Tb observations for improving global operational weather analysis and forecasting systems.

Fig. 1. (Top) T2m and (bottom) q2m forecast skill difference with and without SMAP Tb assimilation as a function of lead time. Skill measured by anomaly correlation vs. operational analysis from the European Centre for Medium-range Weather Forecasts for Jun-Aug 2017. Confidence levels indicated by boxes (green: 68%, red: 90%, blue: 95%) and error bars (black: 99%).