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The SMAP Algorithm Theoretical Basis Documents (ATBDs) provide the physical and 
mathematical descriptions of algorithms used in the generation of SMAP science data products. 
The ATBDs include descriptions of variance and uncertainty estimates and considerations of 
calibration and validation, exception control and diagnostics.  Internal and external data flows 
are also described.  
 
The SMAP ATBDs were reviewed by a NASA Headquarters review panel in January 2012 with 
initial public release later in 2012.  The current version is Revision A.  The ATBDs may undergo 
additional version updates after SMAP launch.  
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COMMON ACRONYMS AND ABBREVIATIONS 
 

AirMOSS  Airborne Microwave Observatory of Subcanopy and Subsurface 
AMSR-E  Advanced Microwave Scanning Radiometer for EOS 

ATBD   Algorithm Theoretical Basis Document 
AVHRR  Advanced Very High Resolution Radiometer 

BA   Burned Area 
BPLUT  Biome Properties Look-Up Table 

C5   MODIS Collection 5 reprocessing 
CARVE  Carbon in Arctic Reservoirs Vulnerability Experiment 

CUE   Carbon Use Efficiency 
DAAC   Distributed Active Archive Center 

DEM   Digital Elevation Model 
EASE-Grid  Equal-Area Scalable Earth Grid 

EOS   Earth Observing System 
ESA   European Space Agency 

ESDSWG  Earth Science Data System Working Group 
EVI   Enhanced Vegetation Index 

FGDC   Federal Geographic Data Committee 
FLUXNET  Global network of tower CO2 eddy covariance measurement sites 

FOV   Field Of View 
FPAR   Fraction of canopy-absorbed Photosynthetically Active Radiation 

Gb   Gigabyte 
GEOS   Goddard Earth Observing System (model) 

GOSAT  JAXA Greenhouse gases Observing Satellite 
GPP   Gross Primary Production 

GSFC   Goddard Space Flight Center 
GMAO  Goddard Modeling and Assimilation Office 

HDF   Hierarchical Data Format 
IGBP   International Geosphere-Biosphere Programme 

IPO   NPOESS Integrated Program Office 
JAXA   Japan Aerospace Exploration Agency 

JPL   Jet Propulsion Laboratory 
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JPSS   Joint Polar Satellite System 
LC   Land Cover 

LSM   Land Surface Model 
MCMC  Markov Chain Monte Carlo 

MERRA  Modern Era Retrospective-analysis for Research and Applications 
MODIS  MODerate-resolution Imaging Spectroradiometer  

NDVI   Normalized Difference Vegetation Index 
NetCDF  Network Common Data Form 

NEE   Net Ecosystem Exchange of carbon dioxide (CO2) 
NOAA   National Oceanic and Atmospheric Administration 

NPP   NPOESS Preparatory Project or Net Primary Production 
NRC   National Research Council 

NTSG   Numerical Terradynamic Simulation Group 
OCO   NASA Orbiting Carbon Observatory 

P   Precipitation 
PDF   Probability Density Function 

PET   Potential Evapotranspiration 
QA   Quality Assessment 

QC   Quality Control 
RFI   Radio Frequency Interference 

RMSD   Root Mean Square Difference 
RMSE   Root Mean Square Error 

SDS   SMAP Science Data System 
SM   Soil Moisture 

SMOS   Soil Moisture Ocean Salinity (ESA space mission) 
SOC   Soil Organic Carbon 

SPDM   Science Processing and Data Management 
Tb   Terabyte 

TBD   To Be Determined 
VI   Vegetation Index 

VIIRS   Visible Infrared Imager Radiometer Suite 
VPD   Vapor Pressure Deficit 

VWC   Vegetation Water Content 
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1.   INTRODUCTION 
The Soil Moisture Active Passive (SMAP) mission is a NASA Decadal Survey mission 

consisting of a satellite L-band radar and radiometer instrument suite, with a projected launch in 
2015 (Jan) that will provide global measurements and monitoring of soil moisture and landscape 
freeze/thaw state dynamics (Entekhabi et al. 2010). The SMAP mission includes a set of planned 
operational data products consisting of lower order (Level 1) brightness temperature and radar 
backscatter measurements, higher order (Level 2/3) soil moisture and freeze/thaw retrievals, and 
model enhanced (Level 4) soil moisture and carbon products. This document describes the 
algorithm and validation approach for the SMAP Level 4 Carbon (L4_C) product.  

The net ecosystem exchange (NEE) of CO2 with the atmosphere is a fundamental measure of 
the balance between carbon uptake by vegetation gross primary production (GPP) and carbon 
losses through autotrophic (Ra) and heterotrophic (Rh) respiration. The sum of Ra and Rh defines 
the total ecosystem respiration rate (Rtot), which encompasses most of the annual terrestrial CO2 
efflux to the atmosphere and typically represents 70-80 percent of the total magnitude of carbon 
uptake by GPP (Baldocchi 2008). The NEE term provides a measure of the terrestrial biosphere 
capacity as a net source or sink for atmospheric CO2 and its ability to offset or reinforce 
anthropogenic greenhouse gas emissions purported to be a major driver of global warming 
(IPCC 2007). NEE and component GPP and respiration rates are spatially heterogeneous and 
temporally dynamic, and strongly influenced by changing environmental conditions encapsulated 
by the SMAP measurements. The baseline L4_C algorithms will utilize daily level 3 freeze/thaw 
inputs (L3_SM_A) and level 4 soil moisture (L4_SM) inputs with other ancillary geophysical 
data, including satellite (MODIS, VIIRS) derived canopy fraction of photosynthetically active 
radiation (FPAR) and daily surface meteorology from observation constrained global model 
reanalysis to compute NEE over all global vegetated land areas. The L4_SM and L3_SM_A 
inputs will define low soil moisture and frozen temperature constraints to GPP and respiration 
calculations, providing a direct link between SMAP product retrievals and net ecosystem CO2 
exchange, and underlying vegetation productivity, soil decomposition and respiration processes. 
Primary science objectives of the L4_C product are to: 

• Determine NEE regional patterns and temporal (daily, seasonal, and annual) behavior to 
within the accuracy range of in situ tower measurement based estimates of these 
processes;  

• Link NEE estimates with component carbon fluxes (GPP and Rtot) and the primary 
environmental constraints to ecosystem productivity and respiration. 

Primary science objectives for SMAP as directed by the National Research Council’s Decadal 
Survey (NRC 2007) and directly relevant to the L4_C product include improving understanding 
of processes linking terrestrial water, energy and carbon cycles; quantifying the net carbon flux 
in boreal landscapes and reducing uncertainties regarding the purported missing carbon sink on 
land. 

The SMAP L4_C baseline product will have a 9 km spatial resolution consistent with the 
L4_SM product, but will retain sub-grid scale heterogeneity information determined from finer 
scale (1-3km resolution) land cover, FPAR and freeze/thaw (L3_SM_A) inputs. The resulting 
carbon product will be similar to the scale of tower CO2 eddy covariance flux measurements 
(Baldocchi et al. 2008, Chen et al. 2012). The baseline L4_C domain will encompass all global 
vegetated land areas and will attain a mean RMSE accuracy for NEE within 30 g C m-2 yr-1 (1.6 
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g C m-2 d-1) over northern (!45°N) boreal and arctic biomes, which is within the estimated ±30-
100 g C m-2 yr-1 accuracy of in situ tower measurements (Baldocchi 2008; Richardson 2005; 
Richardson 2008).  The L4_C baseline product will have a mean daily temporal sampling to 
characterize the dynamic NEE response to daily variations in surface meteorology and associated 
moisture and thermal controls to GPP and respiration, and for greater precision in the 
computation of cumulative (weekly, monthly and annual) carbon fluxes.  Operational 
implementation of the baseline L4_C algorithms using L4_SM and reanalysis (GMAO) surface 
meteorology inputs enables spatially and temporally continuous daily mapping of NEE for all 
vegetated land areas independent of data gaps, vegetation biomass and other constraints on 
SMAP parameter retrievals. The product will determine NEE and component carbon fluxes over 
all global vegetated land areas consistent with the scale of carbon processes of the major regional 
plant functional types.   

The current algorithm baseline was developed from previous L4_C ATBD external reviews 
(e.g. Kimball et al. 2009b) and ongoing algorithm development and assessment activities during 
the SMAP pre-launch phase (Kimball et al. 2009a, 2011, Jackson et al. 2012, McGuire et al. 
2012, Yi et al. 2013). Two options are also being considered for L4_C operational 
implementation in place of the current baseline algorithm. These options potentially enhance 
product accuracy, reliability and science utility, and include: 1) alternative GPP calculations 
using satellite optical-IR based Vegetation Indices (VIs) instead of higher order FPAR inputs 
from MODIS, and 2) representation of non-steady state fire disturbance and recovery effects on 
NEE and component carbon fluxes. This ATBD includes a description of the L4_C algorithm 
and both baseline and optional implementation schemes. The ATBD also includes discussion of 
the major theoretical assumptions and procedures for refining and testing the algorithm to 
achieve the product objectives and mission requirements.  

2.   OVERVIEW AND BACKGROUND 

2.1   The Soil Moisture Active Passive (SMAP) Mission 

2.1.1   Background and Science Objectives 
The National Research Council’s (NRC) Decadal Survey, Earth Science and Applications 

from Space: National Imperatives for the Next Decade and Beyond, was released in 2007 after a 
two year study commissioned by NASA, NOAA, and USGS to provide them with prioritization 
recommendations for space-based Earth observation programs (NRC 2007).  Factors including 
scientific value, societal benefit and technical maturity of mission concepts were considered as 
criteria. SMAP data products have high science value and provide data towards improving many 
natural hazards applications. Furthermore SMAP draws on the significant design and risk-
reduction heritage of the Hydrosphere State (HYDROS) mission (Entekhabi et al. 2004). For 
these reasons, the NRC report placed SMAP in the first tier of missions in its survey. In 2008 
NASA announced the formation of the SMAP project as a joint effort of NASA’s Jet Propulsion 
Laboratory (JPL) and Goddard Space Flight Center (GSFC), with project management 
responsibilities at JPL. The target launch date is January 2015.  

The SMAP science and applications objectives are to: 

• Understand processes that link the terrestrial water, energy and carbon cycles; 
• Estimate global water and energy fluxes at the land surface; 
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• Quantify net carbon flux in boreal landscapes; 
• Enhance weather and climate forecast skill; 
• Develop improved flood prediction and drought monitoring capability. 

2.1.2   Measurement Approach 
A summary of the SMAP instrument functional requirements derived from the mission 

science measurement needs is presented in Table 1. The goal is to combine the attributes of the 
radar and radiometer observations (in terms of their spatial resolution and sensitivity to soil 
moisture, surface roughness, and vegetation) to estimate soil moisture at a resolution of 10 km, 
and freeze/thaw state at a resolution of 1-3 km. 
Table 1. SMAP Mission Requirements. 

Scientific Measurement Requirements Instrument Functional Requirements 
Soil Moisture: 
~±0.04 m3m-3 volumetric accuracy(1-sigma)  in the top 
5 cm for vegetation water content " 5 kg m-2; 
Hydrometeorology at ~10 km resolution; 
Hydroclimatology at ~40 km resolution 

L-Band Radiometer (1.41 GHz): 
Polarization: V, H, T3 and T4 
Resolution: 40 km 
Radiometric Uncertainty*: 1.3 K 
L-Band Radar (1.26 and 1.29 GHz): 
Polarization: VV, HH, HV (or VH) 
Resolution: 10 km 
Relative accuracy*: 0.5 dB (VV and HH) 
Constant incidence angle** between 35° and 50° 

Freeze/Thaw State: 
Capture freeze/thaw state transitions in integrated 
vegetation-soil continuum with two-day precision, at 
the spatial scale of land-scape variability (~3 km). 

L-Band Radar (1.26 GHz and 1.29 GHz):   
Polarization: HH 
Resolution: 3 km 
Relative accuracy*: 0.7 dB (1 dB per channel if 2 
channels are used) 
Constant incidence angle** between 35° and 50° 

Sample diurnal cycle at consistent time of day 
(6am/6pm Equator crossing); 
Global, ~3 day (or better) revisit; 
Boreal, ~2 day (or better) revisit 

Swath Width: ~1000 km 
 
Minimize Faraday rotation (degradation factor at 
L-band) 

Observation over minimum of three annual cycles Baseline three-year mission life 
* Includes precision and calibration stability     
** Defined without regard to local topographic variation 
 

The SMAP observatory (see Figure 1) incorporates an L-band radar and an L-band 
radiometer that share a single feedhorn and parabolic mesh reflector. As shown in Figure 1 the 
reflector is offset from nadir and rotates about the nadir axis at 14.6 rpm (nominal), providing a 
conically scanning antenna beam with a surface incidence angle of approximately 40°. The 
provision of constant incidence angle across the swath simplifies the data processing and enables 
accurate repeat-pass estimation of soil moisture and freeze/thaw change. The reflector has a 
diameter of 6 m, providing a radiometer 3 dB antenna footprint of 40 km (root-ellipsoidal-area). 
The real-aperture radar footprint is 30 km, defined by the two-way antenna beamwidth. The real-
aperture radar and radiometer data will be collected globally during both ascending and 
descending passes.  

To obtain the desired high spatial resolution the radar employs range and Doppler 
discrimination. The radar data can be processed to yield resolution enhancement to 1-3 km 
spatial resolution over the 70% outer parts of the 1000 km swath. Data volume prohibits the 
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downlink of the entire radar data acquisition.  Radar measurements that allow high-resolution 
processing will be collected during the morning overpass over all land regions and extending one 
swath width over the surrounding oceans.  During the evening overpass data poleward of 45° N 
will be collected and processed as well to support robust detection of landscape freeze/thaw 
transitions. 

The baseline orbit parameters are: 

• Orbit Altitude: 685 km (2-3 days average revisit and 8-days exact repeat); 
• Inclination: 98 degrees, sun-synchronous; 
• Local Time of Ascending Node: 6 pm. 
 

 
Figure. 1. The SMAP observatory is a dedicated spacecraft with a rotating 6-m 
light-weight deployable mesh reflector. The radar and radiometer share a 
common feed. 

 

The SMAP radiometer measures the four Stokes parameters, V, H and T3, and T4 at 1.41 
GHz.  The T3-channel measurement can be used to correct for possible Faraday rotation caused 
by the ionosphere, although such Faraday rotation is minimized by the selection of the 6am/6pm 
sun-synchronous SMAP orbit.   

At L-band anthropogenic Radio Frequency Interference (RFI), principally from ground-based 
surveillance radars, can contaminate both radar and radiometer measurements. Early 
measurements and results from the SMOS mission indicate that in some regions RFI is present 
and detectable. The SMAP radar and radiometer electronics and algorithms have been designed 
to include features to mitigate the effects of RFI. To combat this, the SMAP radar utilizes 
selective filters and an adjustable carrier frequency in order to tune to pre-determined RFI-free 
portions of the spectrum while on orbit. The SMAP radiometer will implement a combination of 
time and frequency diversity, kurtosis detection, and use of T4 thresholds to detect and where 
possible mitigate RFI.   



 14 

Planned data products for the SMAP mission are listed in Table 2. Level 1B and 1C data 
products are calibrated and geolocated instrument measurements of surface radar backscatter 
cross-section and brightness temperatures derived from antenna temperatures. Level 2 products 
are geophysical retrievals of soil moisture on a fixed Earth grid based on Level 1 products and 
ancillary information; the Level 2 products are output on half-orbit basis. Level 3 products are 
daily composites of Level 2 surface soil moisture and freeze/thaw state data. Level 4 products are 
model-derived value-added data products that support key SMAP applications and more directly 
address the driving science questions.  

 
Table 2. SMAP Data Products Table. 

 
2.2   L4_C Product/Algorithm Objectives 

The primary science objectives of the L4_C product are to: 

• Determine NEE regional patterns and temporal (daily, seasonal, and annual) behavior at 
the accuracy level of in situ tower measurement based estimates of these processes;  

• Link NEE estimates with component carbon fluxes (GPP and Rtot) and the primary 
environmental constraints to ecosystem productivity and respiration. 

The NRC Decadal Survey for Earth Science Applications from Space (NRC 2007) recognized 
the importance of soil moisture and its freeze/thaw state in the global carbon cycle, and 
particularly for northern latitudes where biophysical processes are strongly limited by frozen 
temperatures for much of the year:  “Soil moisture and its freeze/thaw state are key determinants 
of the global carbon cycle” and “Carbon uptake and release in boreal landscapes are a major 
source of uncertainty in assessing the carbon budget of the Earth system (the so-called missing 
carbon sink).” The Decadal Survey further establishes the importance of the SMAP mission by 
stating that “A soil moisture mission will directly support science to reduce that major 
uncertainty”, in reference to the purported “missing” carbon sink on land. The L4_C algorithm 
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addresses carbon cycle science objectives as put forth in the Decadal Survey by enabling detailed 
mapping and monitoring of spatial patterns and temporal dynamics of land-atmosphere CO2 
exchange, and the underlying carbon fluxes and environmental drivers of these processes. The 
L4_C product will also link SMAP land parameter measurements to global terrestrial CO2 
exchange, including boreal ecosystems, reducing uncertainties about the “missing sink” on land 
for atmospheric CO2. 

Atmospheric transport model inversions of CO2 concentrations indicate that the Northern 
Hemisphere terrestrial biosphere is responsible for much of the recent terrestrial sink strength for 
atmospheric carbon (Dargaville et al. 2002). Variability in land-atmosphere CO2 exchange is 
strongly controlled by climatic fluctuations and disturbance, while uncertainty regarding the 
magnitude and stability of the sink are constrained by a lack of detailed knowledge on the 
response of underlying processes at regional scales (Denman et al. 2007, Houghton 2003). The 
SMAP mission provides the potential for much improved spatial resolution and L-band 
active/passive microwave sensitivity to land surface processes for monitoring soil moisture and 
thermal dynamics of global ecosystems, including boreal and arctic biomes. The baseline L4_C 
algorithms will use daily inputs from the SMAP L3_SM_A and L4_SM product streams to 
define frozen temperature and soil moisture constraints to vegetation productivity, ecosystem 
respiration and NEE. Landscape freeze/thaw state classification inputs from the SMAP 
L3_SM_A product will be used to define the proportional frozen area extent within each 9 km 
resolution grid cell and as an additional frozen temperature constraint to vegetation gross 
primary productivity (GPP) and ecosystem respiration calculations to determine NEE. The L4_C 
algorithm will provide estimates of NEE (g C m-2 day-1) and component carbon fluxes for global 
vegetated land areas at mean daily intervals; the product will have 9-km spatial resolution, but 
will define sub-grid scale mean and variability in carbon fluxes for dominant and sub-dominant 
vegetation classes within each grid cell as determined from finer scale (1-km resolution) 
ancillary land cover classification and FPAR inputs. The NEE product will attain a mean annual 
RMSE accuracy less than or equal to 30 g C m-2 yr-1 (1.6 g C m-2 d-1), and commensurate with 
the estimated accuracy of in situ tower measurements (Baldocchi 2008, Richardson 2005, 
Richardson 2008). The baseline L4_C product spatial resolution will be 9-km, consistent with 
the SMAP L4_SM inputs, but the product will preserve sub-grid scale heterogeneity in carbon 
fluxes represented by finer (1-3km) resolution land cover and freeze/thaw (L3_SM_A) inputs, 
and algorithm processing. The resulting L4_C product spatial resolution will be similar to the 
sampling footprint of CO2 flux measurements from the global tower (FLUXNET) monitoring 
network (Running et al. 1999, Baldocchi et al. 2008). Secondary products of scientific value 
produced during L4_C processing include surface (<10 cm depth) soil organic carbon (SOC) 
stocks (g C m-2), vegetation gross primary production (GPP), net primary production (NPP), 
ecosystem respiration (Rtot), heterotrophic (Rh) and autotrophic (Ra) respiration components, and 
dimensionless (0-100 percent) frozen area, low temperature and moisture constraint indices for 
GPP and Rtot.  

The L4_C product will enable quantification and mechanistic understanding of spatial and 
temporal variations in NEE over a global domain. NEE represents the primary measure of carbon 
(CO2) exchange between the land and atmosphere, and the L4_C product will be directly relevant to 
a range of applications including regional mapping and monitoring of terrestrial carbon stocks and 
atmospheric transport model inversions of terrestrial source-sink activity for atmospheric CO2. The 
SMAP L4_C product will also satisfy carbon cycle science objectives of the NRC Decadal 
Survey and advance our understanding of the way in which global ecosystems, including boreal-
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Arctic biomes, respond to climate anomalies and their capacity to reinforce or mitigate global 
warming. 

2.3   Historical Perspective 
Current capabilities for regional assessment and monitoring of NEE are limited. Atmospheric 

transport model inversions of CO2 concentrations from sparse measurement stations provide 
information on seasonal patterns and trends in atmospheric CO2 but little information on 
underlying processes; these methods are also too coarse to resolve carbon source-sink activity at 
scales finer than broad latitudinal and continental domains (Piao et al. 2007, Dargaville et al. 
2002; Yi et al. 2014). Tower CO2 flux measurement networks provide detailed information on 
stand level NEE and associated biophysical processes, but little information regarding spatial 
variability in these processes over heterogeneous landscapes (Running et al. 1999). Estimates of 
NEE and component carbon fluxes from satellite remote sensing provide a means for scaling 
between relatively intensive stand level measurement and modeling approaches, and top down 
assessments from atmospheric model inversions.  

The Moderate Resolution Imaging Spectroradiometer (MODIS) onboard the NASA EOS 
Terra and Aqua satellites has been providing global, operational mapping of GPP at approximate 
8-day intervals since 2000 (Running et al. 2004), while a similar operational product is planned 
for the JPSS Visible/Infrared Imager/Radiometer Suite (VIIRS) scheduled for NPOESS (NGST 
2011). The GPP term quantifies the photosynthetic uptake of atmospheric CO2, but represents an 
incomplete picture of NEE because of a lack of information on ecosystem respiration. Several 
studies have applied satellite remote sensing to characterize NEE over northern landscapes using 
empirical relationships between CO2 flux measurements and spectral vegetation indices (Hope et 
al. 1995, McMichael et al. 1999) or physiological models driven by optical-infrared (IR) remote 
sensing and surface meteorological data to characterize both vegetation productivity and 
ecosystem respiration (Vourlitis et al. 2000, Potter et al. 2003, Veroustraete et al. 2002). 
Empirical approaches can provide relatively high estimation accuracy, but are limited by the 
quality, quantity and representativeness of observational data used for model development and 
training (e.g. Jung et al. 2011); the resulting simulations are generally suitable for the specific 
regions and conditions under which the models were developed and provide limited diagnostic 
insight into underlying biophysical processes. Physiological models attempt to account for the 
primary environmental controls on productivity and respiration, but are often constrained by the 
availability and resolution of driving meteorological datasets from sparse observational networks 
or coarse (0.5–2.5 degree) resolution gridded products from atmospheric model reanalyses. 

Recent developments in satellite remote sensing offer the potential for direct measurement 
and improved resolution of environmental conditions for estimating land-atmosphere carbon 
exchange. Satellite microwave radiometers are sensitive to variations in surface emissivity and 
dielectric constant associated with changes in soil moisture and temperature (Jackson et al. 1999, 
Njoku et al. 2003). Lower frequency microwaves (e.g., < 18.7 GHz) are capable of penetrating 
clouds and low-biomass vegetation to provide information more representative of the underlying 
soil than higher frequency microwave and thermal infrared (IR) observations. These favorable 
properties have been exploited for mapping surface soil moisture and temperature across a wide 
range of environments and vegetation types, including boreal forest and tundra (Fily et al. 2003, 
Jones et al. 2007, 2010). The NASA Advanced Microwave Scanning Radiometer for EOS 
(AMSR-E) is co-located with MODIS on the NASA Aqua satellite and has provided operational 
and experimental land products, including surface soil moisture (Njoku et al. 2003), landscape 
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freeze/thaw status and soil temperature (Jones et al. 2007, Kim et al. 2012b); these data have 
been used as surrogate measures of soil moisture and thermal controls to respiration calculations, 
and together with operational (MOD17) GPP calculations from MODIS have been used for 
estimating NEE in boreal-Arctic biomes (Kimball et al. 2009a, Yi et al. 2013).  

Satellite active and passive microwave remote sensing retrievals of landscape freeze/thaw 
status have been shown to correspond closely with seasonal frozen temperature constraints to 
water mobility, vegetation productivity and ecosystem respiration (Kimball et al. 2004, 2006, 
Smith et al. 2004, Kim et al. 2012). The influence of the freeze/thaw signal on vegetation 
productivity and NEE is generally greater at upper elevations and higher (i.e. >45°N) latitudes 
where the frozen season represents a larger proportion of the annual cycle (Nemani et al. 2003; 
Kim et al. 2012). The freeze/thaw signal from moderate resolution satellite radars and 
radiometers generally does not distinguish individual (e.g. soil, snow, vegetation) elements 
within the satellite FOV, though lower (L-band) frequency and relatively fine (3-km resolution) 
scale freeze/thaw retrievals from SMAP offer the potential for improved freeze/thaw 
classification accuracy and greater sensitivity to vegetation canopy and soil layers (Du et al. 
2014).   

Synergistic information from satellite optical-IR and microwave remote sensing data series 
were applied within a simple decomposition model for regional mapping and monitoring of NEE 
and component GPP and respiration fluxes over a network of boreal forest, tundra and northern 
grassland monitoring sites, and 3-year (2002-2004) time period (Kimball et al. 2009a). The 
modeling framework is similar to the L4_C algorithms except that model soil moisture and 
temperature inputs were derived from AMSR-E daily brightness temperature time series. The 
resulting RMSE differences between model estimates and tower CO2 flux observations were 1.2, 
0.7, and 1.2 g C m-2 d-1 for GPP, Rtot and NEE, while mean residual differences were 43 % of the 
RMSE. The model accuracies were also similar to detailed site level ecosystem process model 
(BIOME-BGC) simulations, while the model derived SOC estimates compared favorably with 
both site and global soil inventory records; the model results and their associated agreement with 
the soil inventory data indicated that the dominant SOC source for Rh comes from surface soil 
layers with a mean residence time of a decade or less, while Rh accounts for more than half of 
annual ecosystem respiration. An error sensitivity analysis determined that meaningful carbon 
flux estimates could be derived under prevailing climatic conditions at the study locations given 
documented error levels in the remote sensing inputs. The relatively coarse (~12-60 km) spatial 
scale of the AMSR-E footprint limits the ability of the sensor to resolve sub-grid scale land 
surface properties, and the AMSR-E sensor is largely insensitive to surface soil moisture 
conditions where the overlying vegetation biomass water content is above approximately 1.5 kg 
m-2. However, satellite microwave remote sensing provides the ability to monitor land surface 
conditions day or night, independent of solar illumination or signal degradation from cloud 
cover, smoke and other atmospheric aerosol effects; global coverage and temporal fidelity of the 
measurements is largely determined by the orbital geometry of the satellite measurements, 
potential data loss from sensor malfunctions and signal degradation from vegetation, snow and 
atmosphere effects. The combination of satellite retrievals and other observational data within a 
land model data assimilation framework provides capabilities for contiguous global coverage and 
continuous daily monitoring, with improved soil moisture estimates when compared to the model 
or retrieval estimates alone (Liu et al. 2011, Reichle et al. 2007).  
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The L4_C algorithm elements are relatively mature. The MOD17 light use efficiency (LUE) 
algorithm logic and resulting GPP products have been extensively evaluated over global and 
northern land areas, and their uncertainty is well established (e.g. Zhao et al. 2005, Heinsch et al. 
2006, Turner et al. 2006, Zhang et al. 2008, Schaefer et al. 2012). The L4_C theoretical 
assumptions and respiration rate calculations are based on the well known Century (Parton et al. 
1987, Ise and Moorcroft 2006) and CASA (Potter et al. 1993) soil decomposition models, but are 
adapted for use with daily biophysical inputs derived from both satellite optical-IR and 
microwave remote sensing time series as primary model drivers. The L4_C model framework 
was also successfully tested over a latitudinal gradient of northern climate, land cover and 
vegetation biomass conditions using MODIS GPP and AMSR-E soil moisture and temperature 
inputs and was found to produce results with documented uncertainty that were similar to tower 
based CO2 flux measurements (Kimball et al. 2009a). A subsequent test of the L4_C terrestrial 
carbon flux (TCF) model was conducted over northern (!45°N) land areas using MODIS 
vegetation and GMAO (GEOS-5 MERRA) reanalysis daily surface meteorology inputs; these 
simulations showed similar algorithm performance relative to more detailed process model 
simulations of regional land-atmosphere CO2 exchange (McGuire et al. 2012) and generally 
favorable results against regional tower (FLUXNET) observation based carbon fluxes (Yi et al. 
2013). These results provide a foundation for gauging the relative improvement in regional 
carbon flux measures provided by SMAP soil moisture and thermal information over existing 
capabilities.  

2.4   Data Product Characteristics 

2.4.1   Instrument/Calibration Aspects (affecting product) 

The L4_C algorithms will utilize SMAP freeze/thaw (L3_SM_A) and soil moisture (L4_SM) 
product fields as primary model inputs. The L4_C algorithms and product sensitivity to SMAP 
instrument and calibration aspects largely flows through from the L3_SM_A and L4_SM inputs. 
These effects will be partially mitigated through L4_SM reliance on multiple satellite remote 
sensing and biophysical data sources in addition to SMAP product inputs (Reichle et al. 2011). 
Sensor calibration aspects influencing the SMAP L3_SM_A based freeze/thaw retrievals may be 
imparted to the L4_C product through their use as an additional environmental constraint to GPP 
and associated NEE calculations. The relative impact of these properties on the L4_C product is 
being evaluated through pre-launch algorithm sensitivity studies (e.g. Yi et al. 2013).  

2.4.2   Product Scope and Format  

The primary (validated) L4_C output variable is the net ecosystem exchange (NEE) of CO2 (g 
C m-2 day-1) between the land and atmosphere on a per grid cell basis. The L4_C product will 
also contain supporting model outputs including component respiration (Rh) and GPP fluxes (g C 
m-2 day-1) that enable the derivation of other significant carbon variables including NPP (NEE-
Rh), Ra (GPP-NPP), and Rtot (Rh+Ra); surface (<10 cm depth) SOC pools (g C m-2); 
environmental constraint indices influencing ecosystem productivity and respiration calculations, 
and data quality flags for the NEE retrieval. The L4_C derived outputs will be produced at a 
daily time step. The domain of the L4_C baseline product encompasses all global vegetated land 
areas (Figure 2) as determined by ancillary land cover classification, FPAR and L4_SM inputs. 
The L4_C outputs will be posted to a 9 km resolution Earth Grid and global EASE-grid (version 
2) projection format (Brodzik et al. 2012), and consistent with the resolution of SMAP L4_SM 
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inputs. Operational L4_C processing will be conducted at a finer (1-km) spatial resolution 
consistent with the ancillary satellite land cover classification and FPAR inputs. Sub-grid scale 
spatial means and variability (SD) of the 1-km resolution L4_C calculations will be represented 
for the total area and individual land cover classes within each 9 km resolution grid cell. 
Additional metadata will be provided with the L4_C product including the geographic (lat/lon) 
location of each grid cell and fractional (%) representation of individual land cover classes 
within each 9-km product grid cell, and defined from finer (1-km) scale ancillary land cover 
classification inputs used for the L4_C calculations. These ancillary data are expected to remain 
static throughout the operational mission period though the land cover data may be updated 
under planned SMAP data reprocessing efforts to exploit potential improvements in available 
global land cover products that may benefit L4_C product accuracy and utility. 

Initiation of the L4_C product stream is planned following initiation of the SMAP L3_SM_A 
and L4_SM product streams following the in-orbit check-out (IOC) period and approximately 3 
months after launch, with a planned beta release of the data product to the SMAP mission DAAC 
at NSIDC approximately 6 months after launch. The L4_C product will have a target mean data 
latency of no more than 14-days. The L4_C product latency is driven by latency and availability 
of ancillary FPAR (12-day latency) and L4_SM (planned 7-day latency) inputs, and an additional 
2-day data processing period. The targeted accuracy of the L4_C NEE product is ! 30 g C m-2 yr-

1 or 1.6 g C m-2 d-1 (RMSE), similar to the accuracy attained from tower based CO2 flux 
measurements (Baldocchi 2008, Richardson 2005, Richardson 2008). 

The planned L4_C daily product format is summarized in Table 3. Each daily product granule 
will include individual variable fields for each grid cell representing NEE, GPP, and Rh fluxes, 
surface SOC, and environmental constraint (EC) indices affecting the productivity and 
respiration calculations. Sub-grid spatial means and variability (SD) in carbon fluxes and SOC 
determined from the 1-km resolution processing within each 9-km grid cell will be represented 
as additional product fields within each granule, including regional means from up to 8 discrete 
global plant functional types (PFTs) represented within each 9-km grid cell; PFT representation 
within each 9-km grid cell will be defined from the 1-km resolution global land cover 
classification (Friedl et al. 2010) used to drive the L4_C model simulations. The (8) PFT classes 
and initial BPLUT parameters associated with these classes are enumerated in the Appendix 
(Section 6). The EC product fields include four separate fields distinguishing: proportional 
frozen area within each 9-km grid cell and defined from the 3-km resolution freeze/thaw 
(L3_SM_A) inputs; the estimated mean bulk PAR conversion efficiency constraint ("mult) to the 
LUE model based vegetation productivity calculations; and estimated mean soil moisture (Wmult) 
and temperature (Tmult) constraints to Rh within each 9-km grid cell. The EC indices for "mult, 
Wmult, and Tmult are derived from the same dimensionless multipliers used to derive vegetation 
productivity and Rh (Section 3), but are rescaled in the product table to range from 0 (fully 
constrained) to 100 (no constraint) percent.  

A separate global daily product granule will be derived that includes dimensionless data 
quality (QA) identifiers for the NEE calculation, and associated geolocation (latitude, longitude) 
information. The QA information will be derived from global model NEE performance (RMSE) 
diagnostics established from prior model sensitivity simulations, and daily quality control (QC) 
information obtained from lower order FPAR, freeze/thaw (L3_SM_A) and soil moisture 
(L4_SM) inputs. The QA metric for NEE is derived in geophyisical units (g C m-2, RMSE) that 
are rescaled to a smaller set of 4 discrete general quality categories (e.g. 0=best, 1=good, 2=fair 
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and 3=poor) in the final product QA output fields. However, the detailed NEE RMSE QA 
geophysical units may be preserved as research data, separate from the L4_C operational 
product, for supporting post-launch product performance and validation assessments. The L4_C 
QA granules will have a similar format as the primary carbon model output granules described 
above. The QA fields represent model NEE quality metrics for each 9-km grid cell and up to 8 
PFT classes represented within each cell. The QA granule fields also include the number of 
underlying NEE pixels within each 9-km grid cell used to estimate the aggregate QA value of the 
9-km grid cell, and underlying pixel counts of each of the 8, 1-km resolution PFT classes 
represented within each 9-km product grid cell. Requirements for conducting the 1-km resolution 
model simulations include having vegetated (PFT 1-8) land area with valid FPAR. For the L4C 
output product raster dimensions referred to below (Table 3), the NROWS term equals 1624, and 
the NCOLS term equals 3856. 

Figure 2. L4_C global NEE product example for a selected day, and derived using MODIS 
(MOD15) FPAR and GMAO (MERRA) reanalysis daily surface meteorology inputs. The L4_C 
product will encompass all global vegetated land areas.  A comparison of L4_C and tower eddy 
covariance measurement based daily NEE is also shown for a representative coniferous 
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evergreen needleleaf forest (ENLF) tower validation site. A negative (positive) carbon flux 
denotes net ecosystem uptake (loss) of atmospheric CO2. Non-vegetated land and other areas 
outside of the processing domain are shown in grey and white. 

 

Table 3. Planned L4_C daily product format, including daily granules for carbon model outputs 
and estimated NEE daily quality (QA) identifiers. Each granule is gridded to 9-km resolution, 
where each grid cell contains variable fields representing GPP, Rh and NEE fluxes, surface 
SOC, environmental constraint (EC) indices and geolocation (latitude, longitude) of the grid cell 
center. A separate set of daily granules is produced containing dimensionless NEE QA fields for 
each 9-km grid cell and underlying PFT types, and counts of valid 1-km resolution processing 
(and PFT) pixels within each 9-km cell. Each granule will be stored as a separate file. Sub-grid 
spatial average (av) and SD (sd) in the underlying 1-km model calculations are defined as 
individual fields within each granule, including regional means from up to 8 global PFT classes 
within each cell. The EC variables include proportional frozen area (FA), estimated bulk 
environmental constraint to PAR conversion efficiency and vegetation productivity (Emult), and 
soil moisture (Wmult) and temperature (Tmult) constraints to Rh. 

Granule Variable 
Class 

Variable 
Fields 

Dimensions Data type Units Valid Range 

Primary 
L4_C 

outputs 

GPP_9km GPP_cell_av 
GPP_cell_sd 

GPP_pft_1_av 
GPP_pft_2_av 

…_8_av 

NROW *NCOL Flt32 g C m-2 d-1 0-30 

Rh_9km Rh_cell_av 
Rh_cell_sd 

Rh_pft_1_av 
Rh_pft_2_av 

…_8_av 

NROW *NCOL Flt32 g C m-2 d-1 0-20 

NEE_9km NEE_cell_av 
NEE_cell_sd 

NEE_pft_1_av 
NEE_pft_2_av 

…_8_av 

NROW *NCOL Flt32 g C m-2 d-1 -30 - 20 

SOC_9km SOC_cell_av 
SOC_cell_sd 

SOC_pft_1_av 
SOC_pft_2_av 

…_8_av 

NROW *NCOL Flt32 g C m-2 0-25,000 

EC_9km FA 
Emult_av 
Wmult_av 
Tmult_av 

NROW *NCOL Uint8 % 0-100 

GEO_9km Latitude NROW *NCOL  Flt32 DD -90.00 – 90.00 

GEO_9km Longitude NROW *NCOL Flt32 DD -180.00 – 
180.00 
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Granule Variable 
Class 

Fields Dimensions Data type Units Valid Range 

NEE 
QA 

outputs 

QA_9km QA_cell 
QA_pft_1 
QA_pft_2 
…pft_8 

NROW *NCOL Uint8 N/A 0-3 

CNT_9km QA_cnt_cell 
QA_cnt_pft_1 
QA_cnt_pft_2 

…pft_8 

NROW *NCOL Uint8 N/A 0-81 

GEO_9km Latitude NROW *NCOL  Flt32 DD -90.00 – 90.00 

GEO_9km Longitude NROW *NCOL Flt32 DD -180.00 – 
180.00 

 
The L4_C product will be provided in an HDF5 file format consistent with the other SMAP 

operational products. Each nominal data granule of the L4_C product will represent 1 day of 
data. The product will be provided in a global cylindrical EASE-grid (version 2) projection 
containing 3856 columns and 1624 rows with an assumed compression factor of 0.60. The 
estimated L4_C product data volumes are summarized in Table 4 and will be approximately 105 
MB per day for the carbon model granule (e.g. GPP, Rh, NEE, SOC), 12 MB per day for the 
time matched product QA granule, and 117 MB per day for both granules in uncompressed 
HDF5 file format. In production, all granules will be compressed. The estimated total annual 
product (uncompressed) data volume is 41.7 GB (~25 GB compressed) and represents less than 
1% of an estimated mission annual data volume of ca 433 TB. The 1 km resolution L4_C data 
processing yields larger estimated data processing volumes relative to the coarser 9-km product 
resolution but does not impact the final estimated data product storage volumes. 
Table 4. Estimated L4_C data volumes. 
 

Compression 
factor Domain Resolution 

Temporal 
fidelity 

Size: per 
granule 
(MB d-1) 

Size: all 
granules 
(MB d-1) 

Annual 
volume 

(GB) 

Uncompressed Global 9 km Daily 105 (12) 117 41.70 

 

3.   RETRIEVAL ALGORITHM 

3.1   Theoretical Description 

3.1.1   Mathematical Description of the Algorithms 

NEE (g C m-2 d-1) is computed on a daily basis as the residual difference between GPP and 
respiration from autotrophic (Ra) and heterotrophic (Rh) components: 

 

NEE = (Ra + Rh) - GPP       (1) 
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where positive (+) and negative (-) NEE fluxes denote the respective terrestrial loss or uptake of 
CO2. The GPP term (g C m-2 d-1) represents the mean vegetation gross primary production of a 
specified land cover class within a grid cell and is derived on a daily basis using a light use 
efficiency (LUE) model similar to the MODIS (MOD17) operational productivity algorithm 
(Running et al. 2004, Heinsch et al. 2003, Zhao et al. 2005): 

 
GPP = # * APAR           (2) 

 
where # is the conversion efficiency (g C MJ-1) of photosynthetically active radiation (PAR) to 
vegetation biomass, and APAR (MJ m-2 d-1) is the amount of PAR absorbed by the canopy and 
available for photosynthesis. PAR (MJ m-2 d-1) is estimated as a constant proportion (0.45) of 
incident shortwave solar radiation at the surface (Rsw, MJ m-2 d-1) and is used with the estimated 
fraction of incident PAR absorbed by the vegetation canopy (FPAR) to determine APAR:   

 
APAR = PAR * FPAR          (3) 

 
Alternatively, the GEOS-5 land model, which forms the basis of the planned L4_SM model 
assimilation product routinely produces dynamic PAR estimates which could be used to estimate 
APAR in Eqn. (3). The PAR conversion efficiency (#) term is derived on a daily basis from an 
estimated maximum rate (#mx, g C MJ-1) prescribed for different land cover classes (Zhao et al. 
2005), and is reduced for sub-optimal environmental conditions defined as the product (#mult) of 
dimensionless rate scalars ranging from no effect (1) to complete rate reduction (0) for daily 
minimum air temperature (Tmn_scalar), atmosphere vapor pressure deficit (VPDscalar), landscape 
freeze/thaw status (FTscalar) and integrated (0-1 m depth) surface to root zone soil moisture 
(SMrz_scalar) conditions: 

 
#mult = Tmn_scalar * VPDscalar * FTscalar * SMrz_scalar       (4) 

 
# = #mx * #mult           (5) 

 
The above attenuation scalars are defined as simple switch and linear ramp functions (Figure 3), 
and deviate from the original MOD17 algorithm logic (Zhao et al. 2005) by specifying additional 
environmental constraints for frozen landscape conditions and low root zone soil moisture (SMrz) 
levels. The attenuation functions vary according to prescribed minimum and maximum 
constraints determined for different global biome types (Field et al. 1995, Prince and Goward 
1995, Turner et al. 2003, Zhao et al. 2005, Kim et al. 2012). The primary model environmental 
response characteristics in Figure 3 are determined using control parameters defined for 
individual land cover classes within a general Biome Properties Look-Up Table (BPLUT). The 
BPLUT parameter definitions are summarized in Table 5. A detailed set of BPLUT parameters 
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has been developed for pre-launch L4_C algorithm development and is summarized in the 
APPENDIX for individual biome types defined from a global land cover classification (Friedl et 
al. 2010). The BPLUT parameters were assembled from MODIS operational (MOD17) GPP 
product definitions (Zhao et al. 2005), detailed literature reviews and previous definition studies 
for different global biome types (e.g. White et al. 2000), and regional GPP and L4_C model 
calibration and validation studies using in situ tower (FLUXNET) network based carbon fluxes 
(Heinsch et al. 2006, Kimball et al. 2009a, Yi et al. 2013).  

The FTscalar term represents the frozen temperature constraint to landscape water mobility and 
GPP as determined from regional comparisons between tower based GPP observations and daily 
FT retrievals from satellite microwave remote sensing (Kimball et al. 2004, Kim et al. 2012). 
The SMrz_scalar term provides a direct low soil moisture constraint to GPP in addition to the 
atmosphere VPD constraint. These additional terms provide for a direct link between SMAP FT 
and soil moisture products, and associated environmental constraints to GPP and terrestrial 
carbon flux calculations, whereas the original MOD17 algorithm relies solely on daily VPD and 
Tmn inputs to define the primary moisture and low temperature constraints to vegetation 
productivity (Running et al. 2004, Zhao et al. 2005). 
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Figure 3. Attenuation scalars used in the LUE model based GPP calculation for representing the PAR 
conversion efficiency (!) reduction under suboptimal environmental conditions for daily minimum air 
temperature (Tmn), vapor pressure deficit (VPD), root zone (0-1 m depth) soil moisture (SMrz), and 
landscape freeze/thaw (FT) classification defined frozen (F) and nonfrozen (NF) conditions. The 
dimensionless scalars are represented by linear ramp and switch functions that define the ! reduction 
under prescribed maximum (Max) and minimum (Min) parameter ranges for different biome types. The 
scalars are dimensionless, ranging from 0 (fully constrained) to 1 (no constraint), and are used as 
equally weighted multipliers to define the daily bulk reduction (!mult) from a prescribed optimum (!mx) 
conversion efficiency. A detailed summary of BPLUT parameters that define the above response 
characteristics for different global biome types is presented in the Appendix (Section 6). 

The autotrophic respiration (Ra) term in Eqn. (1) represents the sum of vegetation growth and 
maintenance respiration, and is computed on a daily basis as a fixed proportion of GPP within 
individual land cover classes, based on observational evidence that variability in the ratio of Ra 
to GPP is conservative within individual plant functional types (Litton et al. 2007, Gifford 2003, 
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Waring et al. 1998). While this assumption provides a key simplification for a remote sensing 
based algorithm, the proportion of plant photosynthesis devoted to biophysical growth and 
maintenance may vary under changing environmental conditions and over the course of 
vegetation development (Amthor 2000, Makela and Valentine 2001, DeLucia et al. 2007). 

Heterotrophic respiration is computed as the sum of variable decomposition and respiration 
rates from 3 distinct carbon pools as:  

 

Rh = (Kmet * Cmet + [1-Fstr] * Kstr * Cstr + Krec * Crec)      (6) 

 

where Cmet, Cstr and Crec (g C m-2) represent metabolic, structural, and recalcitrant SOC pools, 
and Kmet, Kstr and Krec (d-1) are the corresponding decomposition rate parameters. The metabolic 
and structural SOC pools represent plant litter with relatively short (e.g., " 5 years) turnover 
periods, while the recalcitrant pool represents more physically and chemically protected SOC 
with longer turnover time. 

The three-pool soil decomposition model approximates the complex variation of intrinsic 
SOC turnover rates, but has been found to produce results consistent with a wide range of 
observations from soil warming and incubation experiments (Knorr et al. 2005). Litter inputs to 
the Cmet and Cstr pools in Eqn. (6) are derived as proportions of estimated NPP, while input to 
Crec is defined as a constant proportion (Fstr) of decomposed detritus from the Cstr pool (Ise and 
Moorcroft 2006); outputs to the SOC pools represent daily sums of the respired components: 

 

dCmet /dt = Cfract * NPP – Rh,met      (7) 

dCstr /dt = (1 - Cfract) * NPP– Rh,str       (8) 

dCrec /dt = Fstr * Rh,str– Rh,rec      (9) 

 

where NPP is estimated as a fixed proportion of GPP (g C m-2 d-1) for individual land cover 
classes based on the assumption that vegetation carbon use efficiency is conserved (i.e., 
NPP/GPP is constant) within individual plant functional types (Waring et al. 1998, Gifford 2003, 
Litton et al. 2007). The Cfract term defines the rate in which litterfall from NPP is allocated to 
metabolic and structural SOC pools, and is specified as a fixed rate within individual PFT classes 
(Potter et al. 1993, Ise and Moorcroft 2006). Values for Cfract, and proportional allocations of 
GPP to Ra and NPP are defined in the BPLUT for individual PFT types (Table 5). This approach 
is based on the assumption that the litter input to the SOC pool is proportional to NPP under 
long-term, steady state conditions (Parton et al. 1987, Ise and Moorcroft 2006). 

A dynamic litterfall scheme is employed for daily allocation of annual NPP to metabolic and 
structural SOC pools (Cmet and Cstr). For evergreen forests (including needle-leaf and broadleaf 
types), the litter fraction of annual NPP is evenly distributed over each annual cycle; a simple 
phenology model based on either surface meteorological controls (e.g. Jolly et al. 2005) or a VI 
climatology may also be used to distribute litterfall according to seasonal phenology changes for 
deciduous and non-forest biome types (Randerson et al. 1996; White et al. 2000). 
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The L4_C algorithms employ dimensionless rate curves to account for soil temperature and 
moisture constraints to soil decomposition. The soil decomposition rate (K) is derived as the 
product of dimensionless multipliers for soil temperature (Tmult) and moisture (Wmult) and a 
theoretical optimum or maximum rate constant (Kmx; d-1) under prevailing climate conditions: 

 
Kmet = Kmx * Tmult * Wmult      (10) 

 
where Tmult and Wmult vary between 0 (fully constrained) and 1 (no constraint). The value for Kmx 
is specified as a constant within individual biomes, while decomposition rate parameters for Kstr 
and Krec are estimated as 40 % and 1 % of Kmet, respectively (Ise and Moorcroft 2006). The 
estimation of K assumes constant soil decomposer efficiency (microbial CO2 production to 
carbon assimilation ratio) inherent in the Kmx term, and that soil moisture and temperature are the 
dominant controls on near-term (daily, seasonal, and annual) decomposition rates. However, we 
assume that changes in litter quality (e.g., physical protection and/or chemical resistance to 
microbial decomposition) influence Rh and NEE indirectly through associated changes in 
satellite optical-IR remote sensing derived vegetation indices (e.g. NDVI, EVI) and associated 
FPAR inputs, especially over generally N-limited boreal and tundra ecosystems. 

The soil decomposition rate response to temperature is defined using an Arrhenius type 
function (Lloyd and Taylor 1994): 

 

Tmult = exp [308.56 * ((46.02 + Topt)-1 - (Ts + 46.02)-1)]     (11) 

 

where Topt and Ts are the respective reference and input daily surface soil temperatures (°C) for 
Ts " Topt. The Topt term defines the optimum temperature for soil decomposition and is 
prescribed as a biome-specific constant (Mahecha et al. 2010) in the BPLUT. The above 
relationship defines a low temperature constraint to soil decomposition; Tmult is assumed to be 
unity and soil decomposition no longer temperature limited for soil temperatures above Topt. 
Under these conditions soil moisture is expected to decline with warmer soil temperatures and 
Wmult becomes the primary constraint to Kmet. This assumption is generally valid for most global 
biome types, including temperate, boreal and Arctic ecosystems (Kimball et al. 2009a, Yi et al. 
2013), but may not hold for warm and humid climate zones including tropical biomes (Jones et 
al 2003). A variety of functional types have been used to describe temperature effects on soil 
respiration including exponential (Oberbauer et al. 1992, Mikan et al. 2002) and Poisson (Parton 
et al. 1987, Ise and Moorcroft 2006) functions, while the Arrhenius functional type is physically 
based and provides a relatively accurate and unbiased estimate of soil respiration across a wide 
range of biomes and environmental conditions (Lloyd and Taylor 1994, Fang and Moncrieff 
2001, Knorr et al. 2005, Yvon-Durocher et al. 2012).  

The soil decomposition rate response to soil moisture (SM) has often been described using a 
parabolic function (Davidson et al. 1998, Davidson et al. 2000). This approach is suitable for a 
wide range of soils and accounts for the inhibitory effect of dry and saturated soil moisture 
conditions on aerobic decomposition and respiration (Doran et al. 1990).  Although a parabolic-
type response has been observed from both site observations and laboratory incubation 
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experiments (Ino and Monsi 1969, Bunnell and Tait 1974, Oberbauer et al. 1991, 1996), it may 
not adequately represent ecosystems adapted to wet or inundated soils or conditions where the 
duration of soil saturation is not sufficient to deplete soil oxygen levels to the point of restricting 
decomposition and CO2 respiration (Altor and Mitsch 2008). Many studies also show evidence 
of sustained respiration and CO2 emissions occurring under soil saturation (Chimner 2004, 
Lafleur et al. 2005, Kutzbach et al. 2007, Mäkiranta et al. 2009), which may be facilitated by 
oxygen transport through plant root systems (Colmer and Greenway 2005, Elberling et al. 2011).   

In accordance with previous studies, the SM constraints on soil decomposition for 
unsaturated (SM " SMopt) conditions can be defined as:  

Wmult = [1 + a * EXP(b * SMopt)] / [1 + a * EXP(b * SM)]     (12) 

where SM is expressed as a proportion (%) of soil saturation; SMopt is the optimum soil moisture 
level for heterotrophic decomposition (Doran et al. 1990) and is prescribed for different land 
cover types (Table 5). The a and b terms are empirical fitting parameters (dimensionless) that 
define the decomposition rate response to soil moisture variability and are specified for different 
land cover types in the BPLUT. The Wmult term is assumed to be unity (no restriction) for 
SM>SMopt, which accounts for ecosystem adaptations to wet soil conditions and a general lack 
of landscape level observational evidence for extended SM saturation and associated reductions 
in aerobic decomposition (Chimner 2004, Reddy and DeLaune 2008, Elberling et al. 2011). The 
above algorithm is also based on the assumption that mean surface soil properties are similar 
within individual land cover classes and grid cells defined at the scale of relatively coarse (~1-40 
km) global satellite footprints and modeling grids (Kimball et al. 2009a, Jones et al. 2007). The 
soil moisture response curve represented in Eqn (12) may be further refined to facilitate global 
model BPLUT calibration, including use of a simplified linear ramp function ranging between 
PFT specified minimum and maximum soil moisture levels, calibrated by minimizing RMSE 
differences between model estimated and in situ tower observed CO2 flux observations (e.g., see 
Section 3.7).  
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Table 5.  General Biome Properties Look-up Table (BPLUT) of primary ecophysiological 
parameters used for the L4_C model calculations. 
LUE based GPP calculation 

Parameter Units Description 

"mx  (g C MJ-1) Maximum PAR conversion efficiency 

MinTmn  (°C) The daily minimum air temperature (Tmn) at which " = 0.0 (for non-
limiting VPD, FT & SMrz conditions) 

MaxTmn (°C) The daily Tmn at which " = "mx (for non-limiting VPD, FT & SMrz 
conditions) 

MinVPD  (Pa) The daylight average vapor pressure deficit (VPD) at which " = "mx (for 
non-limiting Tmn, FT & SMrz conditions) 

MaxVPD  (Pa) The daylight average VPD at which " = 0.0 (for non-limiting Tmn, FT & 
SMrz conditions) 

MinSMRZ  (% Sat.) The daily mean root zone (0-1 m depth) SM (SMrz) level at which " = 0.0 
(for non-limiting VPD, FT & Tmn conditions) 

MaxSMRZ (% Sat.) The daily mean surface or SMrz level at which " = "mx (for non-limiting 
VPD, FT & Tmn conditions) 

FFT (DIM) The FT classified daily frozen (F) landscape status where "mult = 0.5 (for 
non-limiting VPD, Tmn & SMrz conditions)  

NFFT (DIM) The FT classified daily nonfrozen (NF) landscape status where " = "mx 
(for non-limiting VPD, Tmn & SMrz conditions) 

Soil decomposition & respiration calculation 

Parameter Units Description 

Cfract (DIM) Proportion of NPP allocated to litterfall 

CUE (DIM) Carbon use efficiency (NPP:GPP) 

Ra:GPP (DIM) Proportion of GPP allocated to autotrophic respiration (Ra); # 1-CUE.  

Kmx  (d-1) Optimum soil decomposition rate 

Kstr:Kmet  (%) Ratio of structural to metabolic SOC decomposition 

Krec:Kmet  (%) Ratio of recalcitrant to metabolic SOC decomposition 

Fstr (DIM) Proportion of structural SOC litter allocated to recalcitrant SOC pool 

Topt  (°C) Optimum soil temperature for SOC decomposition rate response (Tmult) 
calculation  

Maxsm (% Sat.) Maximum or optimum soil moisture level for the SOC decomposition 
rate response (Wmult) calculation; this is equivalent to SMopt. 

Minsm (% Sat.) Theoretical minimum soil moisture level, where estimated Wmult = 0 (i.e. 
full soil moisture limitation so SOC decomposition and Rh) 

3.1.2   Algorithm Baseline 
The L4_C algorithm is composed of light use efficiency (LUE) and terrestrial carbon flux 

model components that are used to estimate GPP, autotrophic and heterotrophic respiration, 
residual NEE carbon fluxes, and underlying SOC pools on a daily basis. NEE represents the 
primary validated L4_C output product, while the accompanying GPP, respiration and SOC 
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outputs will be included for enhanced validation and research activities. The baseline L4_C 
algorithm is summarized in Figure 4 (a, b) for respective LUE and carbon flux model 
components. The algorithm approach has structural elements similar to the Century (Parton et al. 
1987, Ise and Moorcroft 2006) and CASA (Potter et al. 1993) soil decomposition models and 
operational MOD17 GPP algorithm (Zhao et al. 2005, Zhao and Running 2010), but is adapted 
for use with daily biophysical inputs derived from both global satellite and model reanalysis data 
(Kimball et al. 2009, Yi et al. 2013). The current L4_C algorithm baseline was developed from 
earlier versions and pre-launch algorithm development and testing, and incorporates 
recommendations from external L4_C algorithm reviews (e.g. Kimball et al. 2009b).   

 

 

Figure 4a.  Baseline L4_C LUE model structure for estimating GPP. Arrows denote the primary 
pathways of data flow, while boxes denote the major process calculations. Primary inputs 
include daily root zone soil moisture (SMrz) and landscape freeze/thaw (FT) status from SMAP 
L4_SM and L3_SM_A products (in red), and other dynamic ancillary inputs (in green) including 
MODIS (MOD/MYD15) FPAR and reanalysis (GMAO) daily surface meteorology, including 
vapor pressure deficit (VPD), minimum air temperature (Tmn) and incident solar shortwave 
radiation (Rsw). Model calculations are performed at 1-km spatial resolution using dominant 
vegetation class and BPLUT response characteristics for each grid cell defined from a global 
land cover classification. The resulting GPP calculation is a primary input to the L4_C 
terrestrial carbon flux model below (Fig 4b).  
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Figure 4b.  L4_C terrestrial carbon flux model for estimating NEE. Primary algorithm inputs (in 
red) include daily GPP from the LUE model (Fig 4a), and surface soil moisture (SM) and 
temperature (Ts) from the SMAP L4_SM product. NEE is the primary (validated) output, while 
GPP, respiration (Rh+Ra) and SOC are secondary (research) outputs.  

Dynamic (daily) inputs to the L4_C algorithms include satellite optical-IR remote sensing 
(MODIS) based FPAR, GMAO reanalysis surface meteorology (Rsw, Tmn, VPD) and associated 
L4_SM based soil moisture (SMrz) that provide primary inputs to the LUE algorithm to 
determine GPP and NPP; the dynamic inputs also include L3_SM_A defined frozen temperature 
constraints to productivity and autotrophic respiration calculations. SMAP L4_SM based surface 
(" 5 cm depth) soil moisture and soil temperature are used as primary drivers of the soil 
decomposition and Rh calculations. Static inputs to the L4_C algorithms include a global land 
cover (PFT) classification, which is used to define the major plant functional types and 
associated biome specific (BPLUT) response characteristics for each vegetated grid cell within 
the product domain. The land cover classification used for L4_C processing will be consistent 
with the one used in the production of the FPAR inputs. All model inputs are available as 
satellite remote sensing derived products or from model reanalysis. 

The L4_C domain will encompass all global vegetated land areas. The global domain enables 
comprehensive determination of carbon fluxes, underlying SOC stocks and primary 
environmental drivers over all global biomes, and their cumulative impact on global terrestrial 
NEE source/sink activity. The global domain also increases the number and diversity of in situ 
tower observation sites for algorithm calibration and validation, enabling potentially improved 
algorithm accuracy and product utility (Running et al. 1999, Baldocchi 2008). While the L4_C 
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product will be global in extent, product accuracy requirements and validation activities are 
primarily specified for northern ($45°N) land areas consistent with NRC objectives for better 
understanding of terrestrial carbon source/sink activity in boreal regions (NRC 2007, Jackson et 
al. 2012). 

The L4_C calculations will be conducted at a daily time step that provides the necessary 
precision for resolving dynamic boreal vegetation phenology and carbon cycles (Kimball et al. 
2009a, Kim et al. 2012). The L4_C calculations will be conducted at a 1-km spatial scale 
consistent with the resolution of ancillary FPAR and land cover classification inputs. The 
simulations will also be conducted in a consistent global EASE-grid (version 2) projection 
format. Model simulations for each 1-km grid cell will be conducted using the corresponding 
(nearest-neighbor) 9-km resolution L4_SM and GMAO (FP) inputs and 3-km resolution 
L3_SM_A inputs. The MODIS (MOD/MYD15) FPAR product is produced at 1-km spatial 
resolution and 8-day temporal fidelity from both NASA EOS Terra and Aqua sensor records, 
while a similar global product is planned for JPSS VIIRS (NGST 2011). The MODIS FPAR 
operational products use a tile based sinusoidal projection; preprocessing of these data prior to 
the L4_C calculations will involve reprojecting from sinusoidal to 1-km resolution global 
cylindrical EASE-grid projection formats. The FPAR data will be screened and only best quality 
(QC) FPAR data used as L4_C inputs. Missing or unfavorable QC 8-day FPAR data will be gap 
filled on a grid cell-wise basis using an ancillary FPAR mean 8-day climatology established from 
the long-term (10+ year) best QC MODIS FPAR record. The resulting 8-day FPAR data will be 
sub-sampled at the daily processing time step and combined with other daily biophysical inputs 
from GMAO and SMAP L4_SM, and L3_SM_A inputs to estimate GPP and NPP, autotrophic 
and heterotrophic respiration, NEE and surface SOC pools. The model calculations and L4_C 
outputs will also include daily environmental constraint (EC) indices influencing the GPP and 
NEE calculations, including the estimated bulk environmental reduction to PAR conversion 
efficiency (#mult), and the soil moisture and temperature constraints (Wmult, Tmult) to soil 
decomposition and Rh calculations. The resulting L4_C variables will enable characterization of 
spatial patterns and daily temporal fidelity in NEE, underlying carbon fluxes and SOC pools, and 
the primary environmental drivers of these process calculations. 

The resulting fine scale (1-km resolution) L4_C outputs will be spatially aggregated to the 
coarser 9-km resolution grid of the final product by weighted linear averaging of outputs 
according to the fractional cover of individual vegetation classes represented within each 9-km 
grid cell and defined by the underlying 1-km resolution ancillary land cover map and FPAR 
climatology; the sub-grid scale means and SD variability from individual vegetation (PFT) 
classes will be preserved for each 9-km grid cell, while proportional vegetation cover 
information will be included in the product metadata, allowing the coarse resolution data to be 
decomposed into the relative contributions from individual PFT classes within each cell. An 
additional EC constraint will be defined as the proportional (%) frozen area (FA) within each 9-
km grid cell and defined from finer (3-km) resolution SMAP L3_SM_A inputs. These outputs 
will facilitate improved algorithm and product accuracy over heterogeneous land cover areas, 
and product outputs that are more consistent with the mean sampling footprint of most tower 
CO2 flux measurement sites (Baldocchi 2008, Chen et al. 2012).  
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3.1.3  Algorithm Options 
Two primary algorithm options are being considered that affect the L4_C design relative to 

the baseline algorithm. The options are summarized in Table 6 and include: (1) use of lower 
order satellite optical-IR remote sensing based spectral vegetation index (VI) inputs to estimate 
FPAR for the LUE model based GPP calculations; (2) use of ancillary vegetation disturbance 
(fire) and recovery status inputs to perturb model steady state conditions and associated SOC and 
carbon flux calculations. Option (1) allows for estimation of FPAR inputs using more readily 
available VI data if an operational FPAR product stream becomes unavailable during the SMAP 
mission period; use of alternative VI inputs from other operational satellite sensors (e.g. VIIRS) 
potentially enhances reliability of algorithm inputs, but may degrade product latency. Option (2) 
is expected to enhance scientific merit and L4_C product accuracy relative to the baseline, but at 
the expense of increased algorithm complexity; model accuracy and uncertainty may also be 
degraded where available ground observations (e.g. tower age chronosequence networks) needed 
for model disturbance recovery calibration are lacking.  
 
Table 6. L4_C algorithm options. 

Option Description 

(1) L4_C based FPAR and GPP calculation using lower order VI inputs 
(2) Representation of fire disturbance and recovery effects on SOC and carbon flux 

calculations 

 
3.1.3.1  GPP Calculation Using Ancillary VI Inputs 

The baseline L4_C algorithm relies on external FPAR inputs from the MODIS 
(MOD/MYD15) operational product stream available from the NASA EOS Terra and Aqua 
platforms. The MODIS FPAR product is well characterized (e.g. Yang et al. 2006, Masuoka et 
al. 2011) and has been providing regular global 8-day repeat FPAR records at 1-km spatial 
resolution from Terra and Aqua since 2000 and 2002, respectively. The MOD15 FPAR product 
is also a primary input to the MOD17 operational GPP product (Running et al. 2004). Both EOS 
MODIS sensors are currently in extended mission phases, and are projected to extend through 
2017 (Hurtt et al. 2011). Failure of a single MODIS sensor would be mitigated by adjusting 
L4_C processing to ingest FPAR inputs from the remaining operational MODIS sensor, with no 
effect on L4_C baseline processing or product latency. However, failure of both MODIS sensors 
would result in potential loss of a reliable FPAR input for SMAP baseline L4_C production. 
There is currently no alternative operational FPAR product available from any other sensor, 
including the current set of environmental data records (EDRs) from NASA NPP VIIRS; a 
similar FPAR product is planned for JPSS VIIRS (NGST 2011), which has a projected launch in 
2017, well beyond the initiation of SMAP operations.  

Option (1) would involve deriving FPAR within the L4_C algorithm framework using lower 
order VI inputs such as the Normalized Difference Vegetation Index (NDVI) or Enhanced 
Vegetation Index (EVI), which are readily available from other operational satellite sensors, 
including NASA NPP VIIRS. The best quality top-of-canopy VI retrievals for each grid cell 
would be used for empirical estimation of daily FPAR using biome (BPLUT) specific 
coefficients developed between the respective best QC sensor VI records and the long-term (best 
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QC) MODIS FPAR record. The resulting FPAR estimates would be temporally interpolated or 
sub-sampled at a daily time step for input into the L4_C LUE model. FPAR for missing or low 
quality VI retrievals would be obtained directly from the ancillary MODIS FPAR climatology.  

Potential benefits of the VI based FPAR calculation include reduced algorithm reliance on 
operational FPAR products that may not be available during the SMAP mission period, relative 
to alternative VI inputs that are more readily available from multiple satellite sources. Potential 
disadvantages of this option include increased L4_C algorithm complexity and computational 
processing costs associated with the additional step of deriving an intermediate FPAR product 
prior to the LUE model based GPP calculation. Current global VI records from MODIS are 
available at coarser 16-day temporal fidelity (relative to 8-day MODIS FPAR fidelity), which 
would decrease L4_C product mean latency from 14-days (baseline) to approximately 26-days; a 
degraded product latency could reduce potential science application utility. Employing a simple 
empirical function to derive FPAR from lower order VI inputs may result in reduced GPP 
accuracy for some (e.g. higher biomass) areas due to non-linear effects or potential saturation of 
the VI signal; however, a global investigation of these effects using MODIS VI (MOD13A2) 
product inputs showed no significant reduction in GPP accuracy (Kimball et al. 2011, Yi et al. 
2013).  
3.1.3.2  Disturbance and Recovery Effects 

The baseline L4_C algorithms assume dynamic equilibrium between vegetation productivity 
(NPP) and surface SOC and respiration under prevailing climate conditions. This steady-state 
assumption has been successfully applied at global and regional scales and allows relatively 
straight-forward model initialization of surface SOC pools using recent (~10 yr) satellite FPAR 
records and model reanalysis daily surface meteorology (e.g. Ise and Moorcroft 2006, Potter et 
al. 1993). Initial tests of the L4_C algorithms over northern ecosystems indicate that the steady-
state assumption yields NEE results within L4_C accuracy requirements (Kimball et al. 2009a). 
However, the global network of tower eddy covariance based CO2 measurements indicate that 
most ecosystems are affected by disturbance and stand succession processes that create an 
imbalance between vegetation biomass and photosynthetic carbon uptake (GPP), and SOC 
storage, decomposition and carbon loss through Rtot; these measurements also indicate that the 
degree of offset between GPP and Rtot is similar across a broad global range of recently disturbed 
sites under varying succession stages (Baldocchi 2008). In boreal biomes the dominant 
disturbance mechanism is from fire, which may be increasing in frequency and severity with 
regional warming (Kasischke et al. 1995, McGuire et al. 2009).  

The L4_C algorithm option (2) would represent fire disturbance and recovery status using 
ancillary satellite derived disturbance maps to identify the timing and spatial extent of fire 
disturbance and associated vegetation recovery stage on a grid cell-by-cell basis within the 
domain. This information would be used with existing in situ tower eddy covariance CO2 
measurement records to define empirical corrections to the L4_C dynamic steady-state 
assumption between NPP and surface SOC (Baldocchi 2008, Carvalhais et al. 2010). Potential 
sources of ancillary burned area information include the currently operational MODIS 
MCD45A1 burned area fire product, which is provided globally at a monthly time step and 
extends from 2000 onward (Giglio et al. 2006). Other global burned area products are available 
from ensemble satellite fire products (Giglio et al. 2010) or are being planned for VIIRS on NPP 
and JPSS. A disturbance recovery status map would be derived from existing global burned area 
and disturbance history records, and used as static ancillary information for empirical adjustment 
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of GPP and SOC pools in the L4_C algorithm. Disturbance recovery status and associated 
impacts to GPP and SOC pools would be defined from previous studies of satellite VI variability 
over tower fire chronosequence sites (e.g. Goulden et al. 2011, Yi et al. 2013). The ancillary 
disturbance recovery map could remain static or be periodically updated to account for 
disturbance and recovery during the active mission period. Initial implementation and testing of 
the L4_C disturbance recovery option over a northern ($45°N) domain indicated accuracy 
improvement in model estimated carbon fluxes, over baseline steady-state model simulations, 
relative to sparse tower observations for recently disturbed boreal forest areas, though the 
relative impact of these changes on NEE was small compared to climate variability impacts on 
regional carbon fluxes (Yi et al. 2013). The potential benefits of option (2) include improved 
product accuracy and science utility, while drawbacks include increased data throughput, storage 
and computational costs, and increased algorithm complexity over baseline conditions; other 
limitations include a general lack of tower chronosequence site network observations spanning a 
representative global range of affected areas, which constrains disturbance model calibration and 
validation activities.  

3.2 Ancillary Data Requirements  

Anticipated ancillary inputs to the L4_C algorithms are summarized in Table 7.  The SMAP 
L4_C baseline algorithms require dynamic daily FPAR inputs temporally sub-sampled from 
coarser (8-day) fidelity MODIS (MOD15 or MYD15) time series records; FPAR is used with 
global reanalysis (GMAO) daily surface meteorology (Rsw, Tmn, VPD) and SMAP based FT and 
SMrz inputs within the LUE model to estimate GPP. The FT inputs will be obtained from the 
SMAP L3_SM_A product, which includes a FT defined frozen flag derived from the SMAP AM 
orbit SAR FT classification and spanning the global domain, and with similar global EASE grid 
projection format. Alternatively, the SMAP L3_FT_A product provides a consistent FT 
classification, with enhanced temporal (AM and PM) FT fidelity, but is limited to a smaller 
northern (!45°N) domain and polar EASE-grid projection format. The SMAP L4_SM product is 
used to obtain daily SMrz inputs for the L4_C model GPP calculation; L4_SM based daily 
surface (<10 cm depth) soil temperature and soil moisture inputs (Ts, SM) will be used within the 
soil decomposition and respiration model to compute ecosystem respiration and SOC, while 
NEE will be derived as a daily residual difference between GPP and Rtot.  

Preprocessing of the MODIS FPAR inputs will involve spatial reprojection of individual 
MODIS tiles in the 1 km resolution sinusoidal projection format to the 1 km resolution global 
EASE-grid (version 2) projection format of the L4_C product. Only best quality (QC) FPAR 8-
day retrievals will be used for interpolation and estimation of the daily FPAR inputs; missing or 
low QC MODIS FPAR data for each 1 km resolution grid cell will be temporally gap filled using 
an ancillary global 8-day FPAR climatology estimated during the SMAP pre-launch phase from 
the long-term MODIS MOD/MYD15 FPAR record. The ancillary FPAR climatology will 
include the long-term mean and SD temporal variability for each 1 km resolution grid cell and 8-
day time step established from the 10+ year MODIS best QC FPAR record. Model calculations 
using the FPAR climatology will be assigned a lower quality ranking for the product outputs. 
The MODIS FPAR climatology will also be used with the MODIS land cover classification to 
identify vegetated (PFT) pixels with sufficient minimum FPAR levels that define the global 
L4_C potential modeling domain.     

The SMAP L3_SM_A, L4_SM and GMAO daily inputs for the L4_C calculations will be 
provided in a consistent global EASE-grid projection format, but at coarser (3 km and 9 km 
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resolution) spatial scales. The 3-day repeat L3_SM_A based FT records will be subsampled to a 
daily time step using a nearest neighbor selection of the closest adjacent valid FT value; in cases 
of missing or low quality L3_SM_A freeze/thaw retrievals an alternative L3_SM_A frozen flag 
determined from reanalysis (GMAO) surface temperatures (Tsurf) will be used to define 
freeze/thaw inputs to the L4_C algoirthms; FT and Tsurf defined frozen flags are both represented 
in the L3_SM_A global product. The alternative Tsurf based freeze/thaw input may also be used 
during the initial post-launch period until reliable SMAP freeze/thaw seasonal reference state 
conditions are established and stability and accuracy of the associated L3_SM_A freeze/thaw 
flag is verified. The freeze/thaw quality control flags from the lower order L3_SM_A inputs will 
be represented in the L4_C product quality (QC) bit flags and used to identify reliable 3-km 
resolution cells for determining proportional frozen area (FA) EC metrics and GPP within each 
9-km resolution L4_C grid cell. The finer (1 km) resolution L4_C processing will involve spatial 
nearest neighbor selection of overlying coarser resolution grid cells of these model inputs.    
Table 7.  Anticipated primary ancillary inputs to the L4_C algorithm. 

Parameter Units Type Spatial 
Resolution Potential Source 

FPAR % Dynamic 
(8-day) 

1 km MODIS (MOD15A2, 
MYD15A2), 
VIIRS (VVI3P) 

Rsw MJ m-2 d-1 Dynamic 
(daily) 

9 km GMAO 

Tmn °C Dynamic 
(daily) 

9 km GMAO 

VPD Pa Dynamic 
(daily) 

9 km GMAO 

SM % Sat. Dynamic 
(daily) 

9 km SMAP L4_SM 

SMrz % Sat. Dynamic 
(daily) 

9 km SMAP L4_SM 

Ts °C Dynamic 
(daily) 

9 km SMAP L4_SM 

FT  Discrete class Dynamic 
(3-day) 

3 km SMAP L3_SM_A 

Land Cover 
Class Discrete class Static 1 km MODIS (MCD12Q1) 

FPAR 
climatology % 

Static  
(8-day) 

1 km MODIS (MOD15A2, 
MYD15A2) 

Additional Inputs for Algorithm Options 

VI (NDVI, Dimensionless Dynamic 1 km MODIS 
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EVI) (8-16 day) (MOD/MYD13A2), 

VIIRS (VVI) 
Recovery 
Status 

Years Static 1 km MODIS (MCD45), 
GFED  

 
Static inputs to the L4_C baseline algorithms include a 1-km resolution global land cover 

classification consistent with the MODIS IGBP global land cover product (Friedl et al. 2010, 
2011); the land cover classification will be aggregated into a reduced set of 8 global PFT classes 
that will be used with the BPLUT to define general physiological properties and environmental 
response characteristics of individual biomes. Care will be taken to ensure that the land cover 
classification used in the L4_C calculations is consistent with the underlying land cover data 
used to derive the FPAR inputs. A static land cover mask will be applied to exclude open water 
bodies, permanent snow and ice, bare soil and other non-vegetated land areas from the model 
calculations. The MODIS FPAR climatology will also be used to mask PFT areas falling below a 
minimum FPAR level for successful GPP calculation. Quality assessment (QA) metrics included 
in the L4_C product outputs will account for negative impacts on NEE RMSE from significant 
sub-grid scale terrain and land cover heterogeneity relative to the resolution of the overlying 
modeling window. These QA flags will be derived from model error sensitivity analyses (Section 
3.3) and thresholds of elevation spatial variance and proportional coverage of discrete land cover 
classes within each 9 km resolution product grid cell and derived from the finer scale (1-km 
resolution) digital elevation (DEM) and land cover classifications. Additional negative impacts 
from lower quality (QC) flags of the model inputs will be carried through from ancillary FPAR, 
L4_SM and L3_SM_A inputs and used for dynamic daily adjustment of the L4_C EC and QA 
outputs. 

Periodic updating of ancillary land cover information within the L4_C framework is possible 
using available dynamic global land cover classification products such as the MODIS MCD12Q1 
product (Friedl et al. 2011). These data provide a potential means for representing land cover 
changes during the SMAP mission period. Land cover and land use changes from direct and 
indirect human impacts exert a large influence on NEE over a global domain, especially over 
longer (decadal) time scales. The relative impact of dynamic and static land cover inputs on the 
L4_C model calculations will be evaluated. These effects are expected to have less impact over a 
projected 3-year mission cycle and over sparsely populated northern land areas. 

The L4_C algorithms utilize general biophysical response characteristics defined from the 
BPLUT to estimate carbon fluxes and SOC stocks under variable vegetation and climate 
conditions. An initial BPLUT was developed for the L4_C algorithms using general biophysical 
properties established from previous studies (e.g. Potter et al. 1993, White et al. 2000, Ise and 
Moorcroft 2006) and similar parameters defined for the MODIS MOD17 operational GPP 
algorithm (Heinsch et al. 2003, Zhao et al. 2005). The L4_C BPLUT was further refined through 
regional and global comparisons and calibration of prototype L4_C simulations driven by 
existing satellite (MODIS) and reanalysis (GMAO MERRA) inputs against global tower 
(FLUXNET) site network observations and soil inventory records (e.g. Yi et al. 2013). The 
resulting L4_C BPLUT (APPENDIX) is being used for SMAP prelaunch simulations and global 
assessment of algorithm performance and uncertainty. The BPLUT may be recalibrated and 
updated during the SMAP operational period to refine algorithm performance and product 
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accuracy using SMAP operational inputs and information gained from post-launch calibration 
and validation activities (Jackson et al. 2012).   

3.2.1 Impacts from Algorithm Options 
The SMAP L4_C algorithm options will require additional ancillary data requirements (e.g. 

Table 7). The optional use of lower order VI inputs to estimate GPP replaces the use of dynamic 
ancillary FPAR inputs from MODIS. A regional test of this option over a pan-Arctic and boreal 
domain using MODIS (MOD13A2) NDVI inputs showed favorable GPP and NEE results in 
relation to tower observation based carbon fluxes and algorithm performance within product 
accuracy requirements (Yi et al. 2013). The dynamic VI inputs could be obtained from VIIRS on 
NPP or JPSS platforms in the event of loss of an operational FPAR product stream. Lower order 
VI inputs would be used for estimating FPAR using land cover class (BPLUT) specific empirical 
relationships established between existing best quality NPP VIIRS or MODIS VI 
(MOD/MYD13) and FPAR (MOD/MYD15) records. The VI parameters for estimating FPAR 
include top-of-canopy NDVI or EVI. The NDVI is used for production of the MODIS FPAR 
product, while the EVI is also sensitive to FPAR and provides improved canopy sensitivity at 
higher vegetation biomass levels (Huete et al. 1997); however, the potential EVI advantage over 
NDVI would be offset by use of NDVI based MODIS FPAR products for developing empirical 
VI-FPAR relationships and the ancillary FPAR climatology inputs.  FPAR values coinciding 
with missing or lower quality VI retrievals would be obtained directly from the ancillary FPAR 
8-day climatology and assigned a lower QC ranking in the output product. The resulting FPAR 
series would be temporally interpolated to a daily time step on a grid cell-wise basis for 
estimation of GPP. A potential constraint of using dynamic VI time series from VIIRS or 
MODIS is a reduced 16-day VI product latency relative to current 8-day operational FPAR 
products. A reduced 16-day latency for the VI inputs could propagate to a longer (~26-day) mean 
data latency for the L4_C product and negatively impact product science application utility.  
MODIS MOD13/15 VI/FPAR global products currently span more than 10 years of record and 
are relatively comprehensive, well calibrated and validated. Collection 5 reprocessed MODIS 
data are currently available, while Collection 6 data are forthcoming; these data would provide a 
standard from which other potentially available ancillary VI inputs (e.g. from VIIRS) would be 
calibrated against before operational use as ancillary inputs for L4_C calculations.  

Additional ancillary inputs for the L4_C algorithm disturbance option include geospatial data 
that identify disturbance recovery stage on a grid cell-wise basis. Recent (post 2000) disturbance 
recovery could be derived during the SMAP pre-launch period and implemented as a static input 
during SMAP mission operations. These static inputs could be updated periodically (though not 
required) under scheduled reprocessing activities and as additional data become available, and 
would define the approximate disturbance regime and recovery period (e.g. years) since the last 
major disturbance event as determined from the recent satellite record; currently available 
products that satisfy these requirements include the MODIS MCD45 operational disturbance 
product (Roy et al. 2008). An alternative Global Fire Emissions Database (GFED) is derived by 
merging multiple satellite fire products and provides a potential disturbance information source 
(Giglio et al. 2010), but would need to be resampled or downscaled from its native 0.5 degree 
format to a 1 km resolution for L4_C processing. The ancillary recovery stage information would 
be used for prescribed empirical adjustment of model steady state derived SOC pools and NPP 
on a grid cell-wise basis based on the number of years since a major disturbance event and the 
affected land cover (PFT) class, and following previously developed methods (Yi et al. 2013).  
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Potential benefits of this option include improved L4_C product accuracy and science utility, 
including boreal regions where fire disturbance has a major impact on terrestrial carbon 
sequestration and storage processes. Potential drawbacks of this option include difficulties in VI 
representation and model (BPLUT) parameterization of disturbance recovery effects on land-
atmosphere carbon exchange. Tower CO2 flux monitoring sites in recently disturbed areas or 
following regional recovery age chronosequences are critical for model development and 
parameterization of vegetation recovery effects (e.g. Yi et al. 2013), but are underrepresented 
globally (Baldocchi et al. 2008). Other drawbacks include increased processing and model 
complexity due to the additional ancillary inputs and the need to track recovery stage and 
associated impacts on SOC and NPP during mission operations.  

3.3   Variance and Uncertainty Estimates 
The L4_C algorithm performance, including variance and uncertainty estimates of model 

outputs, will be determined during the mission pre-launch phase through model sensitivity 
studies using currently available model inputs similar to those that will be used during mission 
operations and evaluating the resulting model simulations over the observed range of  northern 
(!45 °N) and global conditions. Model inputs being used for these studies include GMAO 
MERRA based soil temperature and soil moisture inputs (Yi et al. 2011, Reichle et al. 2011), 
satellite microwave remote sensing based freeze/thaw records (Colliander et al. 2012, Kim et al. 
2012) and MODIS FPAR and GPP records (Kimball et al. 2011, Yi et al. 2013). These results 
indicate that the L4_C accuracy requirements (i.e. NEE RMSE " 30 g C m-2 yr-1) can be met 
over more than 82% and 89% of global and northern vegetated land areas, respectively (e.g. 
Figure 6). These estimates will be refined following initiation of the SMAP operational data 
stream and associated L3_SM_A and L4_SM production. 

A previous L4_C algorithm sensitivity simulation was conducted for a model evaluation 
study across a network of northern tower sites (Kimball et al. 2009a) and has since been 
extended to a global domain. The original study established an expected accuracy range in 
estimated carbon fluxes for varying Ts and SM uncertainty (RMSE) levels and over a 
characteristic range of northern vegetation and environmental conditions. The predicted NEE 
accuracy levels from this study are presented in Figure 5. 
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Figure 5. Estimated NEE RMSE uncertainty ("NEE) under varying uncertainty levels for SM 
and Ts inputs ("Ts, "SM) and over a range of characteristic soil moisture and temperature 
conditions (Kimball et al. 2009a); "SM ranges from 8-12% (0.04-0.075 m3 m-3). 

The sensitivity study assumed that errors are uncorrelated between Ts and SM inputs and 
uncorrelated through time. The sensitivity study also used a parabolic soil moisture response 
function that exaggerates model error under wetter soil conditions relative to the L4_C 
algorithms. GPP inputs to the L4_C algorithms were assumed to contribute a constant (1.2 g C 
m-2 d-1) representative error, derived as the mean RMSE difference between MODIS (MOD17) 
and tower GPP results over northern test sites (Heinsch et al. 2006). Other potential sources of 
model error including algorithm assumptions and land cover heterogeneity were not considered. 
For respective error levels in Ts and SM of 2 °C and 15 % (of saturation), uncertainty in NEE 
ranges from 0.72–1.30 g C m-2 d-1 for Ts and SM conditions ranging from 0-20 °C and 0-100%. 
These results translate into predicted uncertainties in annual NEE from 13.75–24.84 g C m-2 yr-1. 

The contributions of the different ancillary inputs to the total estimated NEE error vary over 
the characteristic range of Ts and SM conditions. The GPP inputs contribute most of the L4_C 
estimation error for NEE when uncertainty in Rh is relatively small (< 0.64 g C m-2 d-1), which 
generally occurs when either Ts is low (< 10 °C) or SM is near intermediate levels. The L4_C 
sensitivity to SM uncertainty increases under drier SM levels and warmer Ts conditions. These 
results indicate that the L4_C algorithm accuracy is sufficient to determine meaningful carbon 
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flux estimates over a broad range of Ts and SM conditions, including northern boreal forest, 
grassland and tundra biomes (Kimball et al. 2009a). The L4_C algorithm performance was also 
confirmed over larger northern ($45°N) and global domains (Kimball et al. 2011, Yi et al. 2013); 
these results indicate NEE accuracy within algorithm performance guidelines and relative to 
tower observation based carbon flux estimates. The L4_C algorithm performance for NEE is also 
similar to other model approaches, including observation driven machine learning algorithms 
(Jung et al. 2011) and more detailed process model simulations (McGuire et al. 2012). These 
results provide an estimated range of model performance given expected uncertainty in MODIS 
derived GPP and satellite and reanalysis based Ts and SM inputs. Actual model error may be 
larger or smaller depending on correlations between model inputs, model or measurement bias, 
and potential error in model representation of biophysical processes.  

An estimated error budget for the SMAP L4_C product is summarized in Table 8. This table 
quantifies the expected primary error sources and individual and cumulative error contributions 
to the L4_C based NEE estimates. This analysis extends the previous sensitivity study (Figure 
5), but involves estimation of additional product uncertainty due to algorithm assumptions, land 
cover heterogeneity and expected accuracy levels for the GPP calculations and L4_SM inputs.  
The NEE errors are expressed as daily and cumulative annual rates where the total expected 
uncertainty is a function of estimated GPP uncertainty, L4_C algorithm structure and underlying 
assumptions, and expected uncertainty from the L4_SM inputs. Uncertainties in L4_C 
parameters and inputs were defined from the literature. A conservative estimate of model error 
from sub-grid scale land cover heterogeneity effects was determined by evaluating differences 
between model respiration calculations derived from 1-km and 25-km resolution land cover 
classification inputs. Each error source was individually propagated through the L4_C algorithms 
to determine model sensitivity to each error source. Total algorithm uncertainty was then 
estimated by propagating all errors through the model together and assuming that errors were 
independent among sources and independent in time. Uncertainty is reported on an annual basis 
considering all known error sources.  The total annual uncertainty (30 g C m-2 y-1) was estimated 
by summing daily uncertainties (1.6 g C m-2 y-1) and assuming independent errors.  The results 
are in agreement with a previous L4_C algorithm sensitivity study over northern tower sites 
(Kimball et al. 2009a) and similar Markov Chain Monte Carlo (MCMC) calibration studies using 
regional tower data (Richardson 2005, Richardson 2008, Yi et al. 2014); the resulting algorithm 
uncertainty is also comparable with reported daily tower CO2 measurement uncertainties (e.g. 
Baldocchi 2008). 

The estimated soil temperature uncertainty in Table 8 was determined from satellite (AMSR-
E) microwave remote sensing and model reanalysis based studies of surface air and soil 
temperature retrievals relative to in situ measurements (Luo et al. 2003, Zhang et al. 2007, 
Dirmeyer 2006, Jones et al. 2007, Jones et al. 2010). Soil moisture uncertainty was defined from 
the SMAP L4_SM ATBD and from satellite microwave remote sensing and land surface model 
derived soil moisture comparisons with in situ measurements (Luo et al. 2003, Berg 2005, 
Reichle et al. 2004, Ducharne et al. 2000, Dirmeyer 2006). The GPP uncertainty was determined 
through validation activities of the MODIS MOD17 GPP operational product (Heinsch et al. 
2006, Zhao et al. 2006). Uncertainty associated with the autotrophic respiration fraction of GPP 
was determined from tower CO2 eddy flux measurement based estimates of carbon use 
efficiency for several temperate forest types (DeLucia et al. 2007).  The L4_C algorithms were 
initialized using parameter settings developed for northern biomes (Kimball et al. 2009a, Yi et al. 
2013). 
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Table 8. Estimated total annual NEE error (RMSE) budget for the SMAP L4_C product. 

 
Sub-grid scale land cover heterogeneity contributions to L4_C based NEE error were 

considered as the difference between a weighted average of individual land cover types and the 
dominant land cover type within each grid cell. The dominant land cover type and proportional 
(%) area representation of individual land cover classes within each coarse resolution grid cell 
was defined from the IGBP MODIS 1 km resolution land cover map over a northern (!45°N) 
domain. Mean Rh and NPP values were assigned to each grid cell from steady-state simulations 
using daily AMSR-E (temperature and soil moisture) and MODIS derived GPP inputs for the 
2003-2006 period.  Simulations were solved for steady state conditions for each grid cell using 
the BPLUT parameters (APPENDIX) according to the local dominant land cover class, and then 
as a weighted average of simulations using BPLUT parameters from all land cover classes within 
the cell. The error contribution from land cover heterogeneity was then calculated as twice the 
95th percentile difference between the land cover dominant and weighted simulations for each 
grid cell. 

Model sensitivity was determined by taking the model derivative with respect to the 
parameter of interest and performing a linear transformation about the standard model input 
values. Input values were selected to represent the most sensitive portions of the soil moisture 
and temperature response curves and average conditions for representative northern biomes. The 
mean annual standard temperature and soil moisture for the error analysis was set as 5°C and 
20% of saturation; GPP was assumed to be 525 g C m-2 yr-1.  The resulting standard values for Rh 
and NPP were 284 g C m-2, which are median values for the northern domain determined from 
the simulations.  Each error source was considered independent among sources and stationary in 
time.  This allows us to propagate errors using quadratic sums (i.e. by summing the error 
variances).  The independent error sources from input data, model parameterization, and land 
cover heterogeneity categories are listed in the upper portion of Table 8, whereas combinations 
from each category are considered in the lower portion of the table.  The proportional (%) 
contribution from each error source (or combination of sources) is computed by dividing the 
variance (or sum of squares) by the overall error (30 g C m-2 yr-1), which is the approximate sum 
of squares from all sources. 

The resulting error budget indicates baseline L4_C product performance within the target 
accuracy guidelines (i.e. NEE RMSE " 30g C m-2 yr-1 and 1.6 g C m-2 d-1). The error budget 
indicates that land cover heterogeneity contributes more than half (57%) of the total product 

Type of Error Error Source Source 
Units Range Value

NEE 
Contribution      

(g m-2 y-1)
Input Data Temperature °K 1.5-4 3.5 6.2

Moisture m3/m3 0.04-0.10 0.05 5.7
GPP g m-2 d-1 1.0-2.0 1.5 14.5

Model Parameterization Optimal Decomp. Rates/Response Curves  d-1 0.001-0.01 0.005 2.9
Pool Representation/Steady State g m-2 100-1000 1000 9.6
Autotrophic Respiration fraction dim 0.05-0.15 0.1 2.7

Heterogeniety Land Cover Heterogeniety (Soil Respiration) g m-2 yr-1 0-60 16 22.6
Total NEE Error Inputs (Soil Moist./Temp.) Only g m-2 yr-1 8.4

Inputs (All) Only g m-2 yr-1 16.7
Model Only g m-2 yr-1 10.4
Inputs  + Model g m-2 yr-1 19.7
Inputs  + Model + Het. g m-2 yr-1 30.0
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NEE uncertainty variance, while GPP, soil moisture and temperature inputs together contribute 
31% of total error variance, and the remaining 12% of the expected total error variance 
attributable to model parameterization uncertainty. Errors contributed by model parameterization 
are the least certain component of the error analysis because it is difficult to precisely quantify 
global parameter variability and model structural inaccuracy. The error budget is defined relative 
to northern biomes, which are the primary focus of L4_C science requirements and traceability. 
The relative (%) contributions of individual error components are likely to vary for other biomes 
and for variable weather and climate conditions. For example, the relative contribution of input 
soil moisture and temperature uncertainty is expected to be larger for warmer and drier 
grasslands relative to boreal forest biomes. The error budget in Table 8 also represents a 
conservative measure of expected algorithm uncertainty because land cover heterogeneity is 
assessed relative to a coarser (25-km) product resolution rather than the 9-km baseline product 
resolution.  

A spatial implementation of the L4_C error (RMSE) budget over all global vegetated land 
areas was conducted using a forward model sensitivity analysis driven by MODIS FPAR and 
GMAO MERRA reanalysis daily surface meteorology inputs (Figure 6). These simulations 
include both random and systematic error components from model inputs and land cover 
heterogeneity effects at the 9-km spatial resolution of the global simulations and associated 
L4_C product. For the simulations, soil moisture error was assumed to vary linearly with 
estimated GPP from 6% to 20% of soil saturation under low to high biomass productivity. GPP 
error was assumed to represent 30% (a conservative estimate) of daily GPP. The resulting global 
NEE error budget is similar to the previous error table (Table 8) and indicates that the L4_C 
accuracy requirements are satisfied over more than 82 and 89 percent of respective global and 
northern (!45°N) vegetated land areas. Systematic error from sub-grid scale land cover 
heterogeneity defined from the 1 km resolution MODIS land cover product and relative to the 
coarser 9 km resolution modeling grid is the largest source of estimated NEE uncertainty, though 
areas with large heterogeneity errors are confined to relatively few locations. Error contributions 
from the GPP calculations and soil moisture and temperature inputs are generally more spatially 
uniform, but vary with regional gradients in estimated vegetation biomass productivity. The 
estimated L4_C NEE uncertainty increases in higher biomass productivity areas (e.g. forests) due 
to assumptions of increasing uncertainty in satellite microwave soil moisture retrievals and 
associated model assimilation based soil moisture inputs. 
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Figure 6. Estimated annual error (RMSE) budget for the L4_C global NEE calculations; these 
results indicate that the L4_C accuracy requirements (i.e. NEE RMSE # 30 g C m-2 yr-1) can be 
met over more than 82% and 89% of global and northern ($45°N) vegetated land areas, 
respectively. 

The estimated NEE uncertainty is lower than might be expected in some warmer tropical high 
biomass productivity areas (e.g. Amazon rainforest) because of reduced low temperature and 
moisture constraints to the L4_C respiration calculations so that the bulk of model uncertainty is 
contributed by GPP in these areas. Model NEE uncertainty in the African Congo is relatively 
larger than Amazonia due to relatively drier climate conditions in central Africa defined from the 
MERRA surface meteorology inputs and associated uncertainty contributions from both 
respiration and GPP.  
3.3.1 Impacts from Algorithm Options 

The L4_C algorithm options (Table 6) may impact product accuracy and relative error 
contributions from the ancillary inputs, model structure and parameterizations.  Model 
parameterization uncertainty contributes approximately 12% of the total L4_C based NEE 
estimation error variance; however, these estimates represent relative error contributions that will 
be refined using additional comparisons with observations and model sensitivity studies as 
discussed below (Section 3.7). The associated error contribution from model parameterization 
uncertainty would be reduced accordingly through the optional representation of land cover 
disturbance and recovery effects on L4_C calculations. An investigation of disturbance recovery 
effects on prototype L4_C calculations over a northern (!45°N) domain indicated increased 
model GPP and NEE accuracy using an explicit model representation of disturbance recovery 
status over baseline, non-steady state simulations and relative to tower chronosequence based 
carbon fluxes (Yi et al. 2013); relative improvement in GPP accuracy was larger than the gain in 
NEE accuracy due to compensating effects of GPP and Rtot, while the baseline steady-state 
model performance was still within expected product accuracy guidelines. 

Uncertainty associated with the GPP calculations may contribute up to 31% of the total NEE 
estimation error. The additional NEE uncertainty expected from using lower order VI inputs 
rather than MODIS FPAR to derive GPP is expected to be small. The potential effects of NDVI 
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based GPP calculations were evaluated through an initial global implementation of the L4_C 
algorithms. These simulations were conducted over a 7-year record (2002–2008) at a daily time 
step and 1-km spatial resolution using MODIS GPP (Zhao and Running 2010) inputs and 0.5º 
resolution soil moisture and temperature inputs from the GMAO MERRA reanalysis (Kimball et 
al. 2011). The resulting uncalibrated global L4_C simulations showed reasonable agreement 
(NEE RMSE = 1.78 g C m-2 d-1 and 34.0 g C m-2 yr-1) with tower observations from 38 North 
America (Ameriflux) tower sites, though the NEE accuracy was lower than the expected baseline 
(Table 8). A second set of global simulations was conducted using ancillary MODIS (MOD13) 
NDVI inputs and L4_C LUE model to estimate GPP. The resulting daily GPP calculations 
showed favorable agreement (R2 = 0.77; RMSE = 1.25 g C m-2 d-1) with coincident tower 
measurement based GPP from global FLUXNET sites (Figure 7). These calculations were 
similar or slightly better than the MODIS (C.5) MOD17 GPP product accuracy (R2 = 0.77; 
RMSE = 1.27 g C m-2 d-1) relative to the same tower site observations. These results indicate that 
the optional use of VI inputs to estimate GPP in the L4_C model framework would have minimal 
negative impact on product accuracy. 
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Figure 7. Mean (2002-2008) annual GPP map (top) derived from the L4_C optional GPP 
calculation using MODIS NDVI and MERRA meteorology inputs. The lower order NDVI inputs 
are used in the L4_C option algorithm for empirical estimation of FPAR and LUE model based 
estimation of GPP. The L4_C and MODIS (MOD17) results are compared with tower GPP 
estimates from global FLUXNET sites (lower), where error bars denote interannual variability 
in annual fluxes.  
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3.4.   Numerical Computation Considerations 
The SMAP L4_C baseline product will be posted to an EASE-grid (version 2) global 

cylindrical equal area grid with 9-km grid cell resolution. Each nominal data granule will 
represent 1 day of data. The product will cover all global land areas but operational processing 
will only be conducted on vegetated grid cells defined from a static land cover map; open water 
and non-vegetated land areas including permanent ice and snow will be assigned unique mask 
value identifiers. The resulting baseline product data volume and HDF5 format will be 
approximately 117 MB per day (70 MB compressed data volume) and 41.7 GB per year (~25 
GB compressed data volume). These data loads are within the resource capacity of most 
Desktop, Linux cluster and associated network computing environments.  

While the final L4_C product will be posted to a 9 km spatial resolution, operational 
processing will be conducted at a finer 1 km spatial resolution. Ancillary data inputs for L4_C 
production will have variable spatial resolution and associated file sizes, including 1 km 
resolution for land cover classification and MODIS FPAR inputs; 3 km resolution for L3_SM_A 
inputs, and 9 km resolution for L4_SM and GMAO surface meteorology inputs. The MODIS 
FPAR data are available in a tile based global sinusoidal projection with 8-day temporal fidelity 
from Aqua and Terra. A necessary preprocessing step will involve dynamic acquisition and 
reprojection of the MODIS FPAR tiles into the 1 km global EASE-grid format, and temporal 
subsampling or interpolation of these data to a daily time step for input into the L4_C algorithms.  
It is anticipated that an on-line disk storage capacity of several terabytes will be needed for L4_C 
production, including algorithm calibration, testing and validation activities. The L4_C 
algorithms will require external satellite remote sensing inputs that may be processed at a 
different physical location. After production, the L4_C product will be transmitted from the 
SMAP L4 Analysis Subsystem (L4_SDS) at the NASA GSFC Global Modeling and 
Assimilation Office (GMAO) facility for storage to the SMAP mission DAAC at NSIDC. The 
network bandwidth for data transfer will therefore be an important consideration.  

3.5   Programming/Procedural Considerations 
The L4_C algorithm science code will be written in ANSI C for use in a multi-processor 

Linux cluster environment. Source code version control will be conducted using Subversion, a 
mature multi-platform version control system.  Within local prototyping environments, the GIT 
or Mercurial systems may be used.  The final L4_C product will be in HDF5 data format 
consistent with the other SMAP operational products.  HDF5 provides rich support for multi-
dimensional representations of all numeric data types, and support for modern metadata 
encapsulation within self-documenting ‘container’ technologies supported by extensive API 
libraries.  The L4_C science code will be transferred from the University of Montana’s 
Numerical Terradynamic Simulation Group (NTSG) to the GMAO for translation and 
implementation as operational code in conjunction with L4_SM production within the GMAO 
L4_SDS. The L4_C science code versioning will be conducted using the Subversion system, but 
can switch to Mercurial as needed, with test scripts implemented in Python (via numpy and H5py 
packages) and the R language. Programming and procedural considerations for the L4_C product 
primarily involve the way in which the algorithms will be implemented and made operational 
after initial development and test cycles are complete. Adoption of specific metadata standards 
for the L4_C and L4_SM products will follow recommendations by the SMAP SDS and NASA 
Earth Science Data Systems Working Group (ESDSWG) on ISO-19115.x, 19139 and FGDC 
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variants as they evolve.  Metadata design and implementation practices are also taking into 
account emerging best-practices in data preservation and data-curation (Duerr et al. 2011). 

Baseline operations will ingest dynamic daily FPAR, L4_SM, L3_SM_A and GMAO (FP) 
surface meteorology inputs external to the L4_C algorithms. Pre-processing of these data prior to 
their input into the L4_C algorithms will include reprojection, quality screening, gap filling and 
temporal subsampling or interpolation of the MODIS FPAR data to a continuous daily time step; 
sub-sampling of coarser scale L4_SM, L3_SM_A and GMAO inputs to each 1 km resolution 
grid cell. Static ancillary inputs for the L4_C baseline operations will include a global land cover 
map used to define the general biome (BPLUT) properties of each grid cell. An ancillary global 
1 km resolution, 8-day FPAR climatology will be used for gap filling of lower quality MODIS 8-
day FPAR inputs during the L4_C preprocessing stage and prior to temporal subsampling or 
interpolation of the FPAR data for L4_C daily processing. The ancillary land cover classification 
inputs will be consistent with the land cover data used to derive the FPAR inputs, and across the 
various SMAP operational products to the extent possible.  

The L4_C algorithms will require initialization of ancillary SOC stocks under average 
vegetation and climate conditions as a necessary pre-processing step. Model SOC initialization 
will be conducted during the mission pre-launch phase using available FPAR (MODIS), 
freeze/thaw and reanalysis (GMAO) daily inputs. The initialization process will involve cycling 
the global model simulations using a daily climatology established from a long-term (10+ year) 
record to achieve mean SOC steady-state conditions. The SOC pools will then be dynamically 
updated during L4_C operations through the daily allocation of NPP using BPLUT defined 
litterfall rates and estimated Rh. Algorithm calibration and initialization activities will also 
include BPLUT calibration using ancillary tower eddy covariance CO2 measurements and global 
soil inventory data during the pre-launch science code development and testing phase. Re-
initialization of the SOC pools and re-calibration of the BPLUT may occur during the mission 
post-launch phase using SMAP operational L4_SM and L3_SM_A inputs.  

3.5.1 Impacts from Algorithm Options 
The L4_C algorithm options (e.g. Table 6) would affect algorithm programming and 

procedures. The optional use of a static 1 km resolution global disturbance recovery map would 
record time (year of disturbance) of last prior disturbance, as defined from long-term (10+ year) 
satellite (e.g. MODIS MCD45) records and defined during the mission pre-launch period. The 
length (years since disturbance) of recovery would then be tracked for every 1-km grid cell 
during L4_C operations and used for empirical adjustment of estimated litterfall and SOC during 
L4_C operational production (e.g. Yi et al. 2013).   

The optional use of lower order VI inputs (e.g. from MODIS or VIIRS) would require spatial 
reprojection of these data to a 1 km resolution global EASE-grid (version 2) format and temporal 
subsampling or interpolation to a continuous daily time step similar to the procedure for 
processing the baseline MODIS FPAR inputs. The satellite based VI records represent temporal 
composites (e.g. 8-16 day for MODIS or VIIRS) of daily observations; the dynamic best QC VI 
data would used for estimating FPAR using the ancillary MODIS FPAR 8-day climatology and 
land cover class specific empirical coefficients defined in the BPLUT. The VI estimated FPAR 
record would then be subsampled or temporally interpolated to a daily time step between the 
current (ti) and prior (ti-1) time steps on a per grid cell basis. If there are insufficient best quality 
VI input data for FPAR estimation, the data would be gap filled using the corresponding 
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ancillary mean 8-day FPAR climatology values. The ancillary FPAR climatology will be 
established on a grid cell-wise basis from existing (e.g. MODIS MOD15 Collection 5 or higher) 
high quality FPAR records extending over a relatively long (e.g. from 2000) record. Potential VI 
inputs from other satellite records (e.g. VIIRS) would be calibrated to the respective MODIS 
FPAR climatology on a grid cell-wise basis to ensure relative consistency among potential 
alternative data sources. This activity would be conducted as a pre-process to the L4_C 
algorithm implementation similar to preprocessing of the baseline FPAR inputs.  
3.6 Ancillary Data Availability/Continuity 

Anticipated primary ancillary inputs to the L4_C algorithms are summarized in Table 7.  All 
of the required ancillary data inputs for L4_C processing are publicly available as existing 
operational products from NASA data archival (DAAC) facilities, the GMAO or will be 
produced during SMAP operations. Temporally dynamic (daily) inputs to the L4_C algorithms 
include FPAR, which will be derived from the MODIS (MOD/MYD15) operational product 
streams (baseline) from Terra or Aqua. Other dynamic daily inputs include landscape freeze 
thaw status, surface and root zone soil moisture and surface soil temperature that will be 
provided from SMAP operational L3_SM_A and L4_SM product streams.  The L4_C algorithms 
also require daily surface meteorology inputs, including incident solar shortwave radiation, vapor 
pressure deficit and minimum daily air temperature; these data will be provided by GMAO 
reanalysis data derived from the same land model (GEOS-5 or later) used to produce the SMAP 
L4_SM product. Several similar surrogate products are being used for pre-launch L4_C 
development and testing, including the GMAO GEOS-5 based MERRA reanalysis (Yi et al. 
2011) and a satellite passive microwave remote sensing based global daily freeze/thaw 
classification record (Kim et al. 2012). The MODIS Collection 5 FPAR record is currently 
available and regularly updated through existing NASA public data archives; these data are also 
being used for pre-launch L4_C algorithm testing, while similar (Collection 5 or 6) data will be 
used for post-launch operations. 

Static ancillary inputs to the L4_C algorithms include a global land cover classification that is 
used to define the product domain and spatial patterns of biome (BPLUT) properties and 
environmental response characteristics. There are a variety of suitable global land cover products 
available that have been derived from various operational satellite remote sensing datasets, 
including AVHRR (Hansen et al. 2000), MODIS (Friedl et al. 2010), SPOT (Bartholomé and 
Belward 2005) and Landsat (Tucker et al. 2004). The MODIS IGBP global land cover 
classification (Friedl et al. 2010, 2011) is available at 1-km spatial resolution and is used in the 
production of MOD15 LAI/FPAR and MOD17 GPP global products. This product has also been 
used for regional and global implementation and testing of the L4_C algorithms during the 
SMAP pre-launch phase, and produces suitable product accuracy (Kimball et al. 2009a, McGuire 
et al. 2012, Yi et al. 2013). The MODIS land cover classification (Collection 5 or later) will be 
aggregated into a reduced set of 8 global PFT classes that will be used with the BPLUT to define 
the global vegetated domain for model calculations and grid cell-wise environmental response 
characteristics. An additional static ancillary input to the L4_C algorithms includes a MODIS 
mean 8-day FPAR global climatology map series. The climatology is derived on a grid cell-wise 
basis using best quality MODIS (MOD/MYD15) FPAR retrievals from the long-term (10+ year) 
satellite record. These data will be derived during the SMAP pre-launch phase using existing 
MODIS land parameter records (Collection 5 or later).   



 48 

The MODIS sensors on the EOS Terra and Aqua satellites are currently in good health and 
expected to remain operational through 2017, with Aqua operations potentially extending into 
2022 (Ritchie et al. 2013). However, both MODIS sensors are in extended mission phases and 
could fail at any time, eliminating the FPAR (MOD15 and/or MYD15) operational data stream. 
A similar FPAR (VVI2P) product is planned for JPSS VIIRS (NGST 2011), which would 
provide continuity to the MODIS product series, but likely not until well after the initiation of 
SMAP operations. The NASA NPP VIIRS mission currently provides operational global VI 
(EVI and NDVI) products. If the MODIS FPAR operational product stream becomes unavailable 
during the SMAP mission period, FPAR could be derived from the lower order VI inputs using 
the L4_C algorithm option (Table 6). Global VI products, including NDVI, will be operationally 
available from several potential sources during the SMAP mission period, including VIIRS (e.g. 
Table 9). 

 
Table 9. Potential sources of satellite based operational products providing dynamic 1vegetation 
inputs for L4_C production during the SMAP mission development and operations time-frame. 

Agency Satellite Sensor Period Current/Planned 
Operational Products 

NASA Terra MODIS 2000-22017 LC, VI, FPAR, BA 

NASA Aqua MODIS 2002-22017 LC, VI, FPAR, BA 

NOAA NOAA AVHRR 1982- ongoing VI 
NASA NPP VIIRS 2011-32015 VI, BA 

IPO/NOAA JPSS-1 VIIRS 2016- 32021 VI, BA, FPAR 

ESA, NOAA MetOp AVHRR 2006-32020 VI 

1Vegetation inputs include one or more of the following: Land cover classification (LC), VI, FPAR, active fire or 
burned area (BA) time series;  

2Estimated duration of continuing operations based on sensor/satellite health and available fuel (Ritchie et al. 
2013); 
3Expected mission life. 
 
Other ancillary data will be used for pre-launch L4_C algorithm development and refinement 

and post-launch product calibration and validation activities, but are not required for L4_C 
operational production. These data include tower CO2 flux measurement based estimates of GPP, 
Rtot and NEE, and other biophysical data from global FLUXNET sites (Baldocchi 2008). The 
FLUXNET data are available globally (http://www.fluxnet.ornl.gov/fluxnet/index.cfm), while 
many of these sites have multi-year data records with well defined accuracy. The La Thuile 2007 
synthesis activity and associated global product was derived from FLUXNET observation 
records and provides a relatively consistent set of global, gap filled daily tower CO2 flux records 
with well defined uncertainty (http://www.fluxdata.org/DataInfo/default.aspx). Static SOC 
inventory records are available from global site network measurements (e.g. Zinke et al. 1984) 
and existing global maps including IGBP-DIS (Global Soil Data Task 2000) and the Northern 
Circumpolar Soil organic Carbon database (Tarnocai et al. 2009). Global vegetation productivity 
records are available from existing MODIS (MOD/MYD17) GPP (Collection 5) operational data 
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records (Zhao and Running 2010). Other global carbon products available for L4_C pre-launch 
development and post-launch validation activities include observation based empirical multi-tree 
ensemble (MTE) upscaled global monthly carbon products (Jung et al. 2011). Fire disturbance 
and recovery effects on the L4_C calculations are also being evaluated using the MODIS 
(MCD45) operational burned area product (Roy et al. 2008) and a satellite ensemble based 
monthly Global Fire Emissions Database (GFED, Giglio et al. 2010).  

3.6.1 Impacts from Algorithm Options 
The L4_C algorithm options (Table 6) have additional ancillary input requirements relative to 

the product baseline described above. The optional calculation of FPAR internal to the L4_C 
algorithm involves using lower order VI inputs that are readily available as current or planned 
operational products under other missions (e.g. Table 9). The use of alternative VI inputs from 
different sensors would require recalibration and re-evaluation of the empirical FPAR models to 
mitigate potential impacts from cross-sensor bias and calibration differences. The VIs would 
then be used to compute FPAR based on BPLUT specific empirical relationships between the VI 
inputs and MODIS FPAR climatology. Initial testing of this optional approach showed minimal 
impact to GPP estimation accuracy or L4_C based NEE calculations relative to the baseline 
simulations and tower network observations over northern land areas (Yi et al. 2013) and the 
larger global domain (Figure 7).  

The L4_C disturbance option would use a static disturbance recovery status map as an 
additional ancillary input to define the relative deviation of NPP and surface SOC calculations 
from dynamic steady-state conditions. The MODIS MCD45A1 burned area index product (Roy 
et al. 2008) is available globally at 500-m spatial resolution and provides suitable information to 
describe recent (from 2000) global burned area disturbance and recovery status for the L4_C 
calculations. A similar MCD45A1 product may not be operationally available after the MODIS 
era, though an active fire EDR is currently underway or planned for VIIRS on NPP and JPSS, 
and could be processed to provide similar global disturbance recovery information.  

3.7   Calibration and Validation 
The SMAP instrument and product calibration and validation activities are described in the 

SMAP Science Data Calibration and Validation plan (Jackson et al. 2012) while this section 
describes calibration and validation activities as they pertain to the L4_C product. NEE 
represents the primary L4_C product to be validated, while product validation activities and 
success criteria will emphasize northern (!45°N) land areas consistent with SMAP carbon cycle 
science objectives for quantifying net ecosystem CO2 exchange in boreal landscapes.  

The statistical methods and domains of validity envisaged for calibrating and testing the 
L4_C algorithms and for demonstrating that their performance meets the SMAP science 
requirements will involve direct comparisons between model daily outputs and tower eddy 
covariance CO2 flux measurements from available FLUXNET tower sites, and representing 
dominant global biome types (Figure 8). Available tower sites will be selected for calibration 
and validation on the basis of being representative of the dominant vegetation class within a 
L4_C grid cell, and having relatively long-term and complete data records with well defined 
measurement accuracy and uncertainty. The relative accuracy of L4_C outputs will be 
established in relation to available tower network observations within regionally dominant 
vegetation classes and following established protocols (Running et al. 1999, Heinsch et al. 2006, 
Kimball et al. 2009a, Yi et al. 2013). Primary validation activities will involve direct 
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comparisons of SMAP L4_C and corresponding tower NEE estimates on a daily basis for a 
subset of core tower sites. The core tower sites will represent a smaller subset of the global tower 
validation network (Figure 8) where formal data use agreements have been established between 
the SMAP mission and individual tower PIs to provide near real-time observational data during 
the post-launch SMAP validation period. The skill metrics for primary validation will include 
correlation, RMSE and bias between L4_C and corresponding tower daily NEE estimates for 
northern land areas to document that model NEE meets documented accuracy requirements for 
product success (i.e. mean daily RMSE ! 1.6 g C m-2).   

 

  
Figure 8. The FLUXNET global tower network consists of more than 500 sites covering the 
range of global biomes. More than 80 sites satisfy L4_C validation criteria for having long-term 
(>1 yr) records, homogenous land cover conditions and representing regionally dominant biome 
types (above). A subset of ~14 core sites will provide near real-time tower data supporting post-
launch validation activities. Additional validation activities will include comparisons against 
more numerous secondary tower site observations that may be consistent in space but not 
necessarily in time with the SMAP L4_C retrievals. The above map also shows the MODIS 
MCD12Q1 (V5) global plant functional type (PFT) classification; similar ancillary land cover 
information will be used for the planned L4_C calculations.    
 

Additional (secondary) validation activities will involve product comparisons against a larger 
global network of tower carbon flux observations and synergistic global multi-year data records 
having generally well characterized uncertainty, but not necessarily temporally co-located with 
L4_C operational outputs. These secondary activities will include global comparisons of L4_C 
outputs, including NEE, SOC, GPP, and Rtot, against tower observation based estimates and soil 
carbon inventory records (Figure 9). The L4_C product evaluation will also include secondary 
comparisons against spatially contiguous MODIS (MOD/MYD17) GPP operational data records 
and global MTE upscaled monthly carbon products. The primary skill metrics for these 
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comparisons will include model sensitivity diagnostics, correlation, RMSE, bias and distribution 
matching, and consistency checks. 

 
Figure 9.  Global map of surface (<10 cm depth) soil organic carbon (SOC) stocks (kg C m-2) 
derived from the L4_C algorithm using an 8 year (2002-08) record of MODIS FPAR and 
MERRA reanalyisis daily meteorological inputs (top); non-vegetated areas (in white) were 
masked from L4_C processing. An independent SOC map derived from IGBP soil inventory data 
is also shown (middle), while global Probability Density Function (PDF) distributions of the 
L4_C results and two other global SOC inventory records are also shown (bottom; Global Soil 
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Data Task 2000 (IGBP), Zinke et al. 1986 (Site)). Similar comparisons will be used for SMAP 
L4_C calibration and validation activities.  

Calibration and validation of the L4_C algorithms and products will involve model sensitivity 
studies in relation to observed variability in environmental conditions, uncertainties in the LUE 
based GPP calculations and L4_SM inputs (e.g. Figure 10). Model sensitivity studies will be 
conducted by perturbing input parameters within their respective ranges of uncertainty 
independently and in combination, and documenting L4_C algorithm responses. The L4_C 
algorithms will be run using both tower and reanalysis based surface meteorology inputs and 
local and regional land cover conditions to quantify relative error contributions from remote 
sensing and meteorological reanalysis drivers, and model parameterizations and assumptions. 
Similar L4_C algorithm sensitivity studies will be conducted at other FLUXNET sites during the 
SMAP pre-launch algorithm calibration and refinement period and post-launch validation period. 

 
Figure 10. Comparison of tower derived and L4_C model estimated daily NEE for four 
dominant northern biome types (Yi et al. 2013). The L4_C simulations were derived using 
alternative model forcings, including MERRA surface meteorology and MODIS NDVI inputs 
(NEE_MERRA), and tower observation based GPP and meteorology inputs (NEE_site). The 
model results are evaluated against tower observation based daily NEE (NEE_obs). Similar 
forward model simulations and comparisons will be conducted during the SMAP pre-launch and 
postlaunch periods to document L4_C algorithm sensitivity and product accuracy. 

Model-data fusion and data assimilation approaches have been used to quantify the relative 
value of remote sensing observations in land surface models (Renzullo et al. 2008, Crow 2007) 
and to estimate model parameters by inverting carbon flux measurements from regional tower 
networks (Sacks et al. 2007, Zobitz et al. 2008, Knorr and Kattge 2005). Daily eddy flux tower 
measurements are inherently noisy and influenced by local terrain and micrometeorology effects 
(Richardson and Hollinger 2005, Baldocchi 2008). Uncertainty also surrounds model 
assumptions and parameters, and remote sensing inputs. The data assimilation framework is useful 
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for parameter and state estimation in carbon cycle science, and differs from classical estimation 
techniques, by accounting for both observation and model estimation errors (Raupach et al. 2005).  

The Bayesian synthesis framework is useful for parameter and state estimation in carbon 
cycle science, and differs from classical estimation techniques by accounting for uncertainty in 
observations as well as model estimates (Raupach 2005, Knorr 2005). A Bayesian synthesis 
approach will be used to optimize model fit by adjusting biome-specific (BPLUT) model 
parameters and to provide parameter probability distributions that reflect inherent sources of 
uncertainty (e.g. Figure 11). Model-data configurations will be evaluated for overall model fit 
and physical consistency of parameter estimates (Renzullo 2007). The optimization of selected 
L4_C algorithm parameters will be conducted using daily time series carbon fluxes (GPP, Rtot, 
NEE) from tower CO2 eddy covariance flux sites representing major biome types within the L4_C 
product domain. These activities will be conducted during the SMAP pre-launch phase using 
available surface meteorology inputs from MERRA reanalysis, which is similar to the planned 
L4_SM product, and remote sensing inputs from MODIS (Zhao and Running 2010), AMSR-E 
(Jones et al. 2010) and SMOS. Similar calibration and validation activities will be conducted 
during the post-launch phase using SMAP product retrievals.  
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Figure 11. Example Bayesian L4_C model fit at the Tonzi Ranch, FLUXNET tower (D. 
Baldocchi PI) for 2002-2006. The Tonzi Ranch tower footprint represents grassland, but is 
classified as Woody Savanna (mixed oak forest and grassland) in the overlying 1-km resolution 
MODIS grid cell. Each panel shows model results for alternative temperature, moisture and 
GPP inputs, which indicate the respective RMSE error (%error) attributed to model logic and 
ancillary inputs. 

A Monte Carlo Markov Chain (MCMC) optimization approach will be applied to minimize an 
objective function weighted by the observation error and model error covariance matrices by 
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adjusting model parameters within expected uncertainty ranges for individual biome types as 
defined from the literature (e.g. Yi et al. 2013). Model parameters suitable for optimization include 
BPLUT defined proportional carbon allocations (Cfract), carbon use efficiency (CUE) or 
proportional allocation of GPP to Ra, optimal soil decomposition rate constants (Kmx), litterfall 
fraction (Fstr) and soil moisture response coefficients (Wmult). Smaller values of the objective 
function are associated with more informative model-data configurations and resulting posterior 
distributions that allow for significance testing. The resulting simulated carbon pools and fluxes 
will be compared to the available tower observational data. Model-data configurations will be 
evaluated for overall model fit and physical consistency of parameter estimates (Renzullo 2007). 
Additional verification of the initial carbon pools will include comparisons of regional SOC 
patterns and magnitudes against site and regional soil inventories (Tarnocai et al. 2009; Global Soil 
Data Task 2000; Zinke et al. 1984). This approach will provide quantitative and uncertainty 
estimates of the relative value of L4_C outputs in the overall match of model fit to noisy 
observations.  

3.8   Quality Control and Diagnostics 
Quality Control (QC) flags will be obtained as metadata from planned MODIS FPAR, SMAP 

L3_SM_A and L4_SM inputs to the L4_C algorithms.  These quality flags will be carried 
through and combined with additional QC information acquired during L4_C processing, and 
included with the L4_C product. The L4_C QC flags will represent a range of information, 
including validity of estimated carbon fluxes falling within predefined realistic min/max ranges; 
the proportion of successfully processed L4_C 1-km pixels within each 9-km grid cell; the 
dominant PFT class within each 9-km resolution grid cell; whether GPP was derived using 
ancillary FPAR or alternative NDVI inputs; whether FPAR was derived using dynamic 8-day 
FPAR inputs or the ancillary FPAR 8-day climatology; whether the FT inputs were derived from 
ancillary L3_SM_A freeze/thaw or Tsurf inputs. The global realistic min/max ranges for estimated 
carbon fluxes (NEE, GPP, Rh) and SOC fields will be established during the mission pre-launch 
phase from long-term (e.g., 2000-2012) L4_C model simulations driven by available ancillary 
inputs, including MODIS FPAR, FT-ESDR (Kim et al. 2012) and GMAO MERRA (Yi et al. 
2011) records. The estimated model output ranges will be verified against in situ carbon flux 
observations from the global tower measurement network (Baldocchi 2008) and similar carbon 
variable estimates available from other global products (Zhang and Running 2009; Jung et al. 
2011, Global Soil Data Task 2000). The resulting min/max ranges will be stored as an ancillary 
look-up table for assigning QC flags to the model outputs for each 1-km pixel and then 
aggregated to a single QC flag for each 9-km grid cell and daily time step; the QC spatial 
aggregation may involve a simple identification of one or more 1-km pixels identified as “in-
valid” within each 9-km grid cell.  The resulting QC information will be evaluated and 
potentially refined through post-launch L4_C cal/val activities using carbon flux measurements 
from in situ measurement networks and algorithm sensitivity studies conducted over the 
observed range of environmental variability. Post-launch diagnostics will also be performed on 
the operational L4_C output fields, and grid cell values exceeding the specified performance 
thresholds will be identified and flagged for additional user evaluation and potential 
troubleshooting by the SMAP Science Data System (SDS) and Algorithm (ADT) teams.  

The L4_C product will also include more detailed quality assurance (QA) information on 
estimated carbon model performance for NEE as the primary validated product. The L4_C QA 
performance metric will provide a spatially explicit and locally weighted estimate of NEE RMSE 
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uncertainty. The QA metric will be derived globally from forward model sensitivity simulations 
(Section 3.7) that account for uncertainty ranges in model assumptions and critical parameters, 
and expected uncertainty in ancillary data inputs (e.g., Yi et al. 2013). The model simulations 
will be derived during the mission pre-launch phase using available ancillary data extending over 
multi-year (e.g., 2000-2012) records, including MODIS FPAR and GMAO MERRA inputs. The 
resulting simulations will be validated against independent in situ NEE observations from the 
global tower eddy covariance CO2 flux measurement network (Baldocchi 2008). The QA metric 
will include both temporally static and dynamic elements. Spatially variable but temporally static 
QA information will incorporate NEE RMSE uncertainty determined from model sensitivity 
simulations that account for uncertainties in model, inputs, assumptions and parameterizations, 
and expected lower accuracy in areas with higher vegetation biomass, and land cover and terrain 
heterogeneity; these conditions will also affect SMAP retrievals and associated L3_SM_A and 
L4_SM inputs, while the L4_C outputs may not adequately represent sub-grid scale variability 
under complex land cover and terrain conditions. This model performance QA information will 
be derived from pre-launch algorithm sensitivity runs using documented uncertainties in the 
L4_C inputs and updated by the observed environmental conditions (e.g. Figure 6). An example 
NEE RMSE QA map is shown in Figure 12 and was defined from spatially explicit estimation 
of the L4_C NEE error budget over the global domain (Section 3.3). The detailed NEE RMSE (g 
C m-2) QA performance fields will be aggregated to a smaller set of discrete relative quality 
categories (e.g., 0=best, 1=good, 2=fair, 3=poor) and posted to a daily QA granule as part of the 
L4_C operational product set. The detailed NEE RMSE QA carbon units may be provided as a 
research product to support post-launch L4_C cal/val activities.  

  
Figure 12. Example NEE RMSE product quality (QA) map derived from the L4_C global error 
analysis (Section 3.3) and representing: Poor (RMSE > 30 g C m-2 y-1), Fair (20 g C m-2 y-1 < 
RMSE # 30 g C m-2 y-1), Good (10 g C m-2 y-1 < RMSE# 20 g C m-2 y-1), and Best (RMSE#10 g C 
m-2 y-1) discrete QA categories. 
 

3.9   Exception Handling 
Exception handling for the L4_C product will follow the approach of lower level SMAP data 

products to the extent possible. In the L4_C codes, runtime messages emitted are classified as 
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follows (Fatal, Error, Warning, and Advisory); of these, the Fatal, Error, and Warning category 
messages may be considered exceptions. Initial work on defining a SMAP product wide 
exception handling protocol is treated in the JPL memo document SMAP-860-003-11, “Standard 
for Message File Generation for the SMAP/DESDynI SDS”.  This document primarily addresses 
standards for composing Message Files, which include but are not strictly limited to exception 
handling. The exception handling approach at the granule algorithm level will be consistent and 
interoperable within the larger job scheduling and resource allocation system, whether based on 
the Science Processing and Data Management (SPDM) system from JPL, or a functional 
equivalent implemented at the GSFC GMAO. 

3.10   Interface Assumptions 
The baseline L4_C product will use dynamic ancillary inputs of daily landscape freeze/thaw 

status and surface soil moisture and soil temperature from the SMAP L3_SM_A and L4_SM 
products, daily surface meteorology inputs from the GMAO global forward processor (FP), and 
8-day FPAR from MODIS MOD15 or MYD15 (Collection 5 or later) product streams. Static 
ancillary inputs to the L4_C algorithms include a global land cover (PFT) classification and 8-
day global FPAR climatology database established from the long-term MODIS best quality 
FPAR record. The dynamic inputs to the L4_C algorithms will be obtained from the GMAO 
during the SMAP operational period, while static inputs will be obtained from the GMAO and 
SMAP SDS. Ideally, these products will be provided on the SMAP Earth-fixed nested global 
grids and also contain the appropriate quality control flags (e.g. Section 3.8).  

The L4_C options would require additional ancillary inputs, including dynamic land 
parameter inputs from lower order VI series as a substitute for the FPAR baseline, and a static 
global disturbance recovery status map. The VI and disturbance inputs would be provided by the 
GMAO, ideally from either MODIS (MOD13 or MYD13) or VIIRS (VVI) sensor data streams. 
All of these ancillary inputs would include associated QC information derived from these data 
sources, which would be carried through to the L4_C product stream.     

The dynamic ancillary inputs for the L4_C algorithms must be available with latencies of at 
least two days less than the corresponding (14-day) latency of the L4_C product to allow 
sufficient time for L4_C processing. However, the potential use of lower order 16-day VI inputs 
in place of 8-day VI or FPAR inputs could double the resulting L4_C product latency relative to 
the baseline. Once generated, the L4_C product and associated metadata will be transferred to 
the SMAP mission DAAC at NSIDC for permanent archival. 

3.11   Test Procedures  
The L4_C production may involve implementing the algorithms in conjunction with, but 

external to the GMAO assimilation system using dynamic L3_SM_A, L4_SM, GMAO and 
MODIS inputs. An effort will be made to document and ensure consistency between ancillary 
inputs to the L4_C algorithms and other SMAP products. The FPAR inputs will be provided as 
external inputs from ancillary data sources (baseline) or generated internal to the L4_C algorithm 
framework (option) using lower order ancillary VI inputs from operational satellite records (e.g. 
MODIS, VIIRS) and GMAO daily surface meteorology. The use of L4_SM and GMAO inputs 
and ancillary global FPAR climatology enables spatially and temporally continuous mapping of 
NEE and component carbon fluxes for all vegetated land areas in the domain, as these data are 
not constrained by SMAP sensor limitations on soil moisture and temperature retrievals. 
Potential gaps in the dynamic L3_SM_A freeze/thaw and MODIS FPAR inputs could result in a 
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lower product QC ranking, but would not prevent L4_C production. Vegetated land areas will be 
defined from a global land cover classification and where the MODIS FPAR records indicate 
positive vegetation productivity on an annual basis. The use of existing model reanalysis data 
(e.g. MERRA) and currently available remote sensing (e.g. AMSR-E, SMOS and MODIS) 
products as ancillary inputs enables prototype L4_C products to be generated during the SMAP 
pre-launch phase and well before initiation of the operational SMAP data stream. These activities 
provide for the development of mature calibration and validation protocols and a standard from 
which improved model calculations using SMAP derived inputs can be assessed. 

Test procedures during L4_C processing will include operational checks of model 
performance against land cover class specific QC range thresholds established during the pre-
launch development phase and potentially refined during post-launch operations. Product outputs 
that exceed specified range thresholds will be flagged and routed to SDS monitors and ADT 
scientists for further analysis and diagnosis. Potential algorithm adjustments to rectify model 
performance in accordance with product accuracy guidelines may include re-initialization of 
SOC pools, BPLUT recalibration or adjustment of QA/QC criteria to clarify and potentially 
improve product accuracy. These changes would be tested on the offline L4 algorithm simulation 
system running parallel with L4 operations at the GMAO. Any actions taken to meet product 
performance and accuracy guidelines would require approval from the science (ADT) and SDS 
change control board.  

A detailed summary of the L4_C calibration and validation approach is provided elsewhere 
(Jackson et al. 2012, Kimball et al. 2011, Yi et al. 2013) and summarized below. The statistical 
methods and domains of validity anticipated for testing the L4_C algorithms and for 
demonstrating that their performance meets the SMAP science requirements will involve direct 
comparisons between model outputs and tower eddy covariance CO2 flux measurements from 
northern (primary validation domain) and globally distributed monitoring sites from the 
FLUXNET network (Baldocchi 2008). Approximately 80 (from >400) FLUXNET sites meet 
L4_C validation criteria for having spatially homogeneous land cover characteristics and multi-
year data records with well characterized uncertainty. A subset of tower site investigators were 
solicited or have proposed to be SMAP early adopters (Jackson et al. 2012) from which formal 
agreements are being established with the mission for near real-time tower data access. The 
SMAP mission team will work with these collaborators to provide tower based observational 
data in a timely manner and concurrent with the SMAP product stream during the post-launch 
calibration and validation period to ensure robust L4_C validation. A similar strategy was 
successfully implemented for testing MODIS MOD17 GPP products (Running et al. 1999, 
Baldocchi et al. 2001, Heinsch et al. 2006, Turner et al. 2006) and prototype L4_C model based 
NEE and component carbon flux simulations (e.g. Yi et al. 2013). The L4_C performance and 
error budgets will also be determined through model perturbation and sensitivity analyses 
spanning the range of observed environmental conditions and using model input accuracy 
information (e.g. Kimball et al. 2009a). Primary validation metrics for these activities will 
include correlation, RMSE and bias techniques. 

Secondary validation activities will involve comparisons of L4_C outputs against FLUXNET 
data records from up to 100 or more tower validation sites distributed globally and representing 
the major PFT and climate zones; these activities will involve consistency checks of L4_C 
outputs against multi-year, gap filled tower records co-located in space but not necessarily in 
time (Baldocchi 2008). The L4_C products will also be compared against other similar, 
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synergistic land products with relatively well characterized uncertainty, including spatially 
contiguous, observation based global carbon products derived from empirical upscaling 
techniques (Jung et al. 2011), global SOC inventory records (Tarnocai et al. 2009), and MODIS 
(MOD17) GPP records (Zhao and Running 2010). Validation metrics for these activities will 
include sensitivity diagnostics, correlation, RMSE, bias and distribution matching techniques.  
3.12   Algorithm Baseline Selection 

Criteria for the baseline algorithm selection include the availability and quality of ancillary 
satellite based VI and disturbance recovery inputs during the SMAP mission period, and the 
relative effectiveness of the algorithm options for enhancing product accuracy, science utility 
and reliability. Selection of the final L4_C baseline algorithm version will also follow the results 
of algorithm tests involving comparisons against in situ observations and model sensitivity 
studies using pre-cursor satellite observations and reanalysis inputs. If an algorithm option 
provides a significant improvement in L4_C accuracy, reliability or science utility and can be 
implemented without an unsupported cost burden to the mission, then the algorithm will be 
selected as the baseline, subject to approval from the SMAP ADT and SDS change control 
board.  

4. CONSTRAINTS, LIMITATIONS AND ASSUMPTIONS 

The L4 Carbon algorithms incorporate a number of simplifying assumptions consistent with 
a global satellite remote sensing product and may not sufficiently characterize all the major 
processes regulating CO2 exchange. For example, soil decomposition studies indicate that the 
carbon assimilation efficiency of soil microbes and associated SOC decomposition rates vary 
with changes in soil nitrogen availability (Agren et al. 2001), and may not be adequately 
represented by a biome-specific optimum soil decomposition rate (Kmx). Tower based studies 
over a northern temperate grassland site show large increases in vegetation photosynthetic light-
use efficiencies and GPP during years with increased summer precipitation and soil moisture 
(Flanagan et al. 2002). At a mature boreal black spruce forest site, automated sampling and 
isotopic analysis of soil respiration indicate that Rh from deeper (> 20 cm depth) soil layers 
increases with soil warming, with a significant respiration contribution from older (centuries 
before present) SOC sources (Hirsch et al. 2003). These processes may not be well represented 
by regional GPP estimates and near surface freeze/thaw, soil temperature and moisture 
conditions from relatively coarse scale satellite remote sensing measurements and model 
assimilation data.  

The L4_C algorithm framework assumes that spatial and temporal variability in the relative 
magnitude and sign of land-atmosphere CO2 exchange are largely driven by changes in 
photosynthetic leaf area and the environmental constraints to NPP, and surface soil wetness 
and temperature variations through direct environmental controls on Rh. The L4_C 
productivity calculation has extensive heritage from the EOS MODIS MOD17 operational 
product, which provides for relatively accurate global mapping and monitoring of GPP and 
NPP (e.g. Heinsch et al. 2006, Zhao and Running 2010). Previous studies have also shown that 
surface soil temperature and moisture information can be retrieved with reasonable accuracy 
over heterogeneous landscapes from relatively coarse resolution satellite microwave remote 
sensing time series (Jones et al. 2007, Njoku et al. 2003), or obtained directly from observation 
constrained global reanalysis data (Yi et al. 2011).  Other studies indicate that the freeze/thaw 
retrieval from satellite microwave remote sensing provides an effective measure of landscape 
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water mobility and associated frozen temperature constraints to vegetation productivity over 
the global cryosphere (Kimball et al. 2004, 2006, Kim et al. 2012). These data provide 
surrogate measures of primary environmental controls on vegetation productivity, soil 
decomposition and Rh across a broad range of northern and global biomes (Kimball et al. 
2009a, 2011, Yi et al. 2013).  

The L4_C baseline algorithms additionally assume that surface SOC stocks are in relative 
equilibrium with these environmental conditions and NPP. This steady-state assumption 
produces a carbon neutral biosphere (long term cumulative net ecosystem-atmosphere CO2 
exchange (NEE) = 0). Disturbance and recovery effects on L4_C carbon flux calculations are 
partially accounted for through associated impacts to ancillary FPAR or VI (option) inputs. 
Forward model sensitivity simulations and regional evaluations of the baseline steady-state 
simulations indicate reasonable accuracy at daily, seasonal and annual time scales relative to 
tower observations and more detailed process model approaches for northern biomes (Kimball 
et al. 2009a, Yi et al. 2013, McGuire et al. 2012).  However, an analysis of flux tower records 
across several biomes suggests that carbon source-sink strength at most locations is impacted 
by disturbance history, which adjusts above and below ground carbon stocks away from 
steady-state conditions (Baldocchi 2008).  Alternative modeling approaches incorporate a 
relaxed steady-state assumption that first estimates steady-state conditions and then perturbs 
the system using an empirical ‘disturbance parameter’ based on the magnitude and sign of 
cumulative long term NEE fluxes observed by eddy flux tower measurements over 
representative biomes or inverted from atmospheric CO2 concentrations (Carvalhais et al. 
2008, Rayner et al. 2005). The L4_C disturbance recovery algorithm would use ancillary 
satellite remote sensing based disturbance or burned area products to track the timing and 
extent of burned area and general vegetation recovery stage on a grid cell-wise basis; carbon 
fluxes would be adjusted for disturbance and recovery effects using empirical parameters 
established from global tower CO2 eddy flux measurement networks (Baldocchi 2008, 
Carvalhais et al. 2010).  Investigation of non-steady state fire disturbance and recovery effects 
on L4_C calculations over a northern (!45°N) domain showed relatively large impacts on NEE 
and component carbon fluxes following large fire events as determined from boreal tower 
chronosequence networks and satellite (GFED) based burned area products (Yi et al. 2012). 
However, these effects declined rapidly within the first 5-10 years following disturbance. 
These effects were also relatively small compared with regional temperature variability and 
drought impacts within the 11 year (2000-2010) simulation period. The L4_C steady-state 
simulations were also found to produce similar accuracy relative to northern tower observation 
and model inversion based carbon fluxes, and more detailed process model simulations 
representing non-steady state conditions (McGuire et al. 2012). Nevertheless, fire disturbance 
during the SMAP mission period is expected to cause large deviations between estimated 
(baseline) carbon fluxes and actual conditions for the affected grid cells. The relative impact of 
disturbance is expected to be larger with increasing fire severity or duration, and for biomes 
with a larger component of woody vegetation cover.   

Land cover and land use changes (LCLUC) from direct and indirect human impacts exert a 
large influence on NEE over a global domain, but are expected to have less impact over 
sparsely populated northern land areas. Satellite remote sensing based studies indicate that 
LCLUC from deforestation accounts for up to 1-3% yr-1 of forested land area in tropical 
regions (Lepers et al. 2005); these biome changes combined with urban and agricultural 
conversions have a substantial influence on global NEE patterns and recent trends (IPCC 
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2007). The current (C5) MODIS MOD15 algorithm and FPAR product series uses a static 
global land cover classification and does not explicitly represent disturbance and LCLUC 
impacts; disturbance and LCLUC impacts are only partially accounted for through associated 
changes to photosynthetic canopy cover represented by NDVI inputs to the LAI/FPAR 
(MOD15) algorithm. Land cover and land use changes occurring during the SMAP mission 
period would effectively alter biome (BPLUT) response characteristics of the affected region 
and would not be adequately represented using a static (baseline) ancillary land cover 
classification in the L4_C algorithms, resulting in reduced NEE accuracy. The MODIS 
MOD12Q1 land cover classification and MOD44A vegetation cover conversion products are 
produced at annual and 16-day time periods (Friedl et al. 2010, Zhan et al. 2002). These data 
could be applied for periodic (e.g. annual) updating of ancillary land cover inputs and resulting 
BPLUT and SOC characteristics for more explicit representation of LCLUC impacts to the 
L4_C NEE calculations; however, these MODIS products may be unavailable during the 
SMAP mission period, while similar operational products are not currently part of the VIIRS 
land product list on NPP or JPSS. The relative accuracy, uncertainty and consistency of 
available land cover change products are also uncertain over the global domain. 

The potential productivity contribution and soil insulation effects of organic ground cover 
to NEE are not distinguished in the planned L4_C algorithm apart from the FPAR and L4_SM 
inputs and general land cover properties specified in the BPLUT. The Nitrogen (N) content of 
leaf litter and associated impacts to NPP, Rh and NEE are also not distinguished in the L4_C 
algorithm apart from general land cover properties specified in the BPLUT. These model 
uncertainties are included in the L4_C algorithm error budget analysis and indicate that model 
input and parameterization errors contribute up to 43% of total NEE uncertainty (RMSE), 
though model error due to lack of a distinct organic layer and litter N representation is a 
smaller (i.e. "12%) component of the total relative error contribution estimated in Table 8.  
These results indicate that the baseline L4_C algorithm structure produces an NEE accuracy 
that is within the uncertainty of tower CO2 flux measurements (RMSE "30 g C m-2 yr-1), even 
without a distinct organic ground cover representation.  

The inhibiting effects of low soil moisture on soil CO2 fluxes are included in the L4_C 
algorithm, primarily through a non-linear soil heterotrophic response to surface soil moisture 
changes. High soil moisture conditions, especially in wetlands and boreal and arctic biomes, 
have been associated with reduced CO2 production by aerobic decomposition and respiration 
processes, and enhanced methane (CH4) production by anaerobic decomposition. Studies 
supporting Rh reduction under saturated soil conditions are largely based on controlled 
incubation experiments and extended inundation periods, while evidence is less consistent 
from studies involving natural, landscape level observations and heterogeneous surface 
conditions, including tower eddy covariance measurement footprints. Few wetland tower sites 
are available for robust model development and calibration. Pre-launch L4_C algorithm 
simulations also indicated decreased NEE accuracy (relative to the baseline) by imposing an 
alternative (convex parabolic) soil moisture response curve and greater soil moisture 
constraints under saturated soil conditions relative to global FLUXNET tower records. The 
L4_C algorithms therefore assume no soil moisture constraint to Rh under saturated soil 
conditions. The L4_C calculations may therefore overestimate Rh and underestimate NEE 
carbon (CO2) sink strength for some areas under extended inundation conditions.  
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The SMAP L-band active/passive microwave measurements are sensitive to surface soil 
moisture and water inundation, while soil moisture and temperature influence both aerobic and 
anaerobic respiration processes; therefore, SMAP data and extension of L4_C model 
framework are potentially useful for regional mapping and monitoring of both CO2 and CH4 
fluxes (e.g., Watts et al. 2014). While CH4 is a significant greenhouse gas and wetlands are a 
major component of northern and global ecosystems, CH4 is beyond the scope of current L4_C 
algorithm and product specifications. 

The L4_C baseline algorithm will employ GMAO defined daily minimum air temperature 
and L3_SM_A defined frozen temperature constraints to GPP with L4_SM based surface (<10 
cm depth) soil temperature inputs to define the Rh response to soil temperature. The algorithm 
defines cold temperature constraints to NPP and heterotrophic respiration but assumes no soil 
temperature constraint on Rh above a biome (BPLUT) specific optimum temperature threshold. 
Under warmer soil conditions, low soil moisture is assumed to be the primary constraint to Rh. 
These assumptions may not hold in warm and relatively moist climate conditions (e.g. tropical 
rainforest), leading to potential overestimation of NPP and Rh, and enhanced soil 
decomposition and underestimation of SOC. The net effect of these errors on NEE is less clear, 
but likely mitigated by compensating changes in GPP and respiration components.  

The L4_C soil decomposition algorithm is based on the assumption that the bulk of Rh is 
derived from surface soil layers. This assumption generally holds for most ecosystems, 
including boreal-arctic biomes, because the bulk of annual litter decomposition is composed of 
relatively recent (i.e. <5 years old) leaf litter that is more labile than older soil litter layers. 
However, deeper soil layers can contribute up to 40% or more of total Rh, especially later in 
the growing season as the seasonal warming of deeper layers progresses and lags behind 
shallower soil layers (Hirsch et al. 2003). The contribution of deeper SOC layers to Rh may 
also increase over longer (decadal) time periods in boreal-Arctic regions due to the large 
reservoir of SOC stored in these colder soils and potential warming and destabilization 
permafrost and deeper SOC layers under global warming (Schuur et al. 2009). The L4_C 
algorithm error budget analysis and model comparisons against regional and global tower 
observation based carbon fluxes (Kimball et al. 2009a, 2011, Yi et al. 2013, McGuire et al. 
2012) indicate algorithm performance within the specified product accuracy requirements 
(RMSE " 1.6 g C m-2 d-1 or 30 g C m-2 yr-1).  The baseline algorithm appears adequate to 
capture NEE seasonal and interannual variations over a 3-5 year SMAP mission life. However, 
the current algorithm would likely need to represent the Rh contributions of deeper soil layers 
over longer time periods. The L4_SM product will provide both surface and root zone soil 
moisture and temperature information down to 1m soil depth, so the potential exists for 
estimating Rh and associated NEE contributions from deeper soil layers.  

Sub-grid scale land cover heterogeneity is a potential source of L4_C algorithm 
uncertainty, where landscape variability in land cover conditions and NEE may not be 
adequately represented by the 9-km grid cell resolution of the baseline L4_C product. 
However, land cover heterogeneity effects will be reduced through the use of finer (1-km 
resolution) scale processing and representation of associated land cover cohorts within each 9-
km product grid cell. The finer scale processing and representation of sub-grid scale 
heterogeneity defined from the ancillary (1 km resolution) global land cover classification 
inputs is also more consistent with the footprint of most tower (FLUXNET) observation sites, 
facilitating more robust algorithm calibration and product validation activities.  
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Additional algorithm uncertainty is contributed by coarse scale GMAO and L4_SM daily 
surface meteorology inputs, which may not adequately represent local terrain variability and 
associated microclimate effects. This uncertainty will be estimated through pre-launch 
evaluations of sub-grid scale land cover and terrain heterogeneity defined from finer scale land 
products, and documented in the L4_C product QA/QC metrics and associated metadata. These 
effects will also be partially mitigated using finer (1-3-km resolution) scale frozen temperature 
constraints to L4_C based NPP calculations provided by the ancillary L3_SM_A inputs.   

The L4_C algorithms use a single set of land cover specific coefficients from a look-up 
table (BPLUT) with ancillary climate, land cover and FPAR inputs to estimate spatial and 
temporal variations in NEE and component carbon fluxes over a global domain. Calibration of 
the BPLUT PFT response characteristics using a limited set of global tower (FLUXNET) CO2 
flux monitoring sites likely does not represent the full range of variability in climate and 
vegetation conditions over the global domain, and may result in reduced accuracy and 
unspecified uncertainty in underrepresented areas. The BPLUT approach has extensive 
heritage and has been successfully used for similar satellite based global products, including 
the EOS MODIS operational (MOD17) GPP product (Zhao and Running 2010). However, use 
of singular coefficients to describe heterogeneous processes may lead to model prediction error 
where the underlying population response is skewed or multi-modal and not well represented 
by a single mean response characteristic. Ideally a Bayesian approach would be better suited to 
represent sub-grid scale population variability (and uncertainty) in model response 
characteristics. Here we refer to the use of a Bayesian approach to estimate the BPLUT 
parameters, and provide a distribution of model outcomes based on specified BPLUT input 
parameter distributions (e.g. Figure 11). However, these approaches are currently 
computationally prohibitive for an operational global product. The characteristic distributions 
of many of the BPLUT parameters are also uncertain based on the current literature and sparse 
tower observation networks.  

The L4_C product is intended to reduce uncertainty regarding the boreal carbon (CO2) sink 
on land (NRC 2007). However, NEE is an incomplete representation of CO2 source-sink activity 
because it does not account for anthropogenic carbon emissions or terrestrial carbon losses due to 
fire, harvesting, and other disturbance (Baldocchi 2008). However, the SMAP L4_C products 
will be appropriate for use with sparse station observations (e.g., FLUXNET, NOAA CMDL), 
regional fire, and fossil fuel emission estimates to initialize, constrain, and optimize atmospheric 
transport model inversions of atmospheric CO2 for regional to global assessment and monitoring 
of terrestrial CO2 source-sink activity. The NOAA CarbonTracker represents one such carbon 
data assimilation framework for tracking global CO2 exchange for policy makers, industry, 
scientists, and the general public (Peters et al. 2007). Current carbon assimilation systems, 
including CarbonTracker, rely on ecosystem model based estimates of NEE derived from coarse 
(~1 degree resolution or greater) reanalysis based surface meteorology inputs with large 
uncertainty, particularly over northern latitudes (e.g., Zhao et al. 2005, Zhang et al. 2007, Yi et 
al. 2014). The L4_C framework will provide NEE inputs with enhanced spatial resolution, 
temporal fidelity and accuracy over current methods, with additional information on underlying 
moisture and thermal controls to land-atmosphere CO2 exchange. Atmospheric transport model 
inversions using the L4_C outputs as prior conditions would enable quantification of terrestrial 
CO2 source/sink activity (an NRC science objective) and additional validation of L4_C outputs 
against other CO2 observational records (e.g. OCO-2, CO2 flask network) and baseline 
conditions from existing land models. 
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6.   APPENDIX 
 
Initial L4_C algorithm BPLUT used for global product development and testing; parameters are 
specified for individual plant functional types defined by a MODIS (C5) global land cover 
classification (Friedl et al. 2010), including evergreen needleleaf forest (ENF), evergreen 
broadleaf forest (EBF), deciduous needleleaf forest (DNF), deciduous broadleaf forest (DBF), 
grass (GRS), shrub (SRB), cereal crop (CCRP) and broadleaf crop (BCRP) types. Parameter 
definitions are provided in Table 5 of the main text. The initial parameters were established from 
the literature and subsequently modified based on nested MCMC calibration minimizing model-
tower NEE RMSE differences for >80 global tower (FLUXNET) calibration sites representing 
the global PFT classes.  
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