

- Exceptional quality global L-band radiometry.
- Limited-duration but valuable L-band active-passive global field campaign
- Available beta-data L1 products at NSIDC and ASF public-access (since August)
- Soon-available (mid-September and ahead of schedule) beta-version of L2_SM_P
- Intense Cal/Val Period on-going
- 2015 field campaigns completed (August for SMAPVEX15) and to-start (September for SMAPEx-5)

Timing and Objectives of This Community Workshop: Science Team Perspective

- 1. Review Intense Cal/Val Period early results
- 2. Review the forthcoming early-release of L2_SM_P product
- 3. Plan and refine continuing Intense Cal/Val activities plan and cal/val to EOM
- Collect and integrate new ideas on:
 - a) Algorithm calibration priorities
 - b) Dealing with bias
 - c) SMOS-Aquarius-SMAP science products transitions
 - d) New validation assets
 - e) New ideas on metrics and error characterization (e.g. representativeness)

Radiometer Products: Reduced RFI Data Loss and High Performance

Example of radiometerbased soil moisture cal/val

Texas Soil

Observation Network

(TxSON):

0.5

E_{0.5}

Pick example of a good comparison.

Shows height/upper-limit of what comparisons can be if algorithm and in situ representativeness errors can be minimized.

Value of Limited-Duration But High-Quality Data Active-Passive Data

April 14 to July 7 (2.5+ months = 84 days) of high-quality 3km and 9km
 Global surface soil moisture data

- NH Spring/Summer science analyses
- Test-bed for resolution-enhancement and disaggregation approaches

Additional Radiometer-Based Products that Increase Science Returns

SMAP TB-Only Vegetation

Microwave Optical Depth

SMAP Radiometer Wind Speed for Super Typhoon Maysak on Mar 31, 2015 reached 120 knots

Path Forward: SMAP Resolution Enhancement

Process Over-Sampled SMAP Radiometer Data

Take advantage of SMAP radiometer over-sampling to produce 20 km¹ (TBC) resolution brightness temperature product

Global coverage every 2 – 3 days

Compares to global 10 km activepassive SMAP baseline

Use Multi-Platform Data

Use other radar data in SMAP's active-passive algorithm

- Better-than 10 km resolution but
- 8-day revisit
- Regional coverage (60% of land)
- C- versus L-band

Use geostationary Satellite IR/Vis (10km; 3-day revisit)

Sentinel-1 /W Scan-Mode (Green)

SMAP Science and Application Returns Impact of Lower Resolution Data

Science Returns

Soil Moisture <u>Links</u> the Global Land Water, Energy, and Carbon Cycles

 Estimating global surface water and energy fluxes

No major impact

Quantifying net carbon flux in boreal landscapes

Increase data-loss due to in-land water bodies¹

 Reduce uncertainty of climate model projections

No major impact

Rational Weather Service
West Gulf River Forecast Center
I Hour Flash Flood Guidance
Updated July 5, 2018 12:50 PM CDT

Drought Severity Index by Division
Wesky Value for Period Ending July 28, 2008
Long Term Pointer

Long Term Pointer

Floods

F

4. Enhancing weather forecasts

Improving flood prediction and drought monitoring No impact on global NWP.
Reduced capability for regional NWP.²

No impact on drought monitoring. Much reduced capability for flood monitoring

NWS Global NWP at 13-35 km. NWS North America NWP at 12 km.

^{~80%} of pixels with less than 5% inland water body at 3 km ~70% of pixels with less than 5% inland water body at 18 km

- Exceptional quality global L-band radiometry
- Limited-duration but valuable L-band active-passive global field campaign
- beta-data L1 products at NSIDC and ASF public-access data archives since August
- beta-version of L2_SM_P (earlier than scheduled in mid-September) and L2-L4 data
- Intense Cal/Val on-going
- 2015 field campaigns completed (SMAPVEX15) and to-start (SMAPEx-5)

Exceptionally made possible by:

- Volunteer participation of you (Cal/Val partners and participants): Sharing of data, pre-launch rehearsals, regular on-going interaction,...
- Exceptional cal/val team leadership:

L2-4 Lead = Tom Jackson

Tools and more = Andreas Colliander

L1 Leads = Mike Spencer, Sid Misra and Jeff Piepmeier

SMAPVEXnn & SMAPEx-n campaigns = Tom Jackson & Jeff Walker

- Close coordination between Algorithm Development Team and ST Algorithm Science Leads
- Support of the Project through exceptional SDS Team and OASIS testing environment

Exceptionally made possible by:

- Volunteer participation of you (Cal/Val partners and participants): Sharing of data, pre-launch rehearsals, regular on-going interaction,...
- Exceptional cal/val team leadership:

L2-4 Lead = Tom Jackson

Tools and more = Andreas Colliander

L1 Leads = Mike Spencer, Sid Misra and Jeff Piepmeier

SMAPVEXnn & SMAPEx-n campaigns = Tom Jackson & Jeff Walker

- Close coordination between Algorithm Development Team and ST Algorithm Science Leads
- Support of the Project through exceptional SDS Team and OASIS testing environment

Timing and Objectives of This Community Workshop

- 1. Review Intense Cal/Val Period early results
- 2. Review the forthcoming early-release of L2_SM_P product
- 3. Plan and refine continuing Intense Cal/Val activities plan and cal/val to EOM
- 4. Collect and integrate new ideas on:
 - a) Algorithm calibration priorities
 - b) Dealing with bias
 - c) SMOS-Aquarius-SMAP science products transitions
 - d) New validation assets
 - e) New ideas on metrics and error characterization (e.g. representativeness)