

Soil Moisture Active Passive (SMAP) Microwave Radiometer RadioFrequency Interference (RFI) Mitigation: Initial On-Orbit Results

SMAP CAL VAL WORKSHOP #6

Priscilla N. Mohammed^(1, 2)

Jeffrey R. Piepmeier⁽¹⁾

Joel T. Johnson⁽³⁾

Mustafa Aksoy⁽³⁾

Alexandra Bringer⁽³⁾

- (1) NASA Goddard Space Flight Center
 - (2) Morgan State University
 - (3) The Ohio State University

Radiometer RFI Processing

- SMAP includes a digital backend to improve RFI detection and mitigation
- Digital backend enables a variety of detection algorithms
- RFI detection
 and filtering of TA
 performed by
 L1B processor;
 applied prior to
 APC, FR, and
 other corrections
 to get TB

Max-Hold Log10(H pol RFI) 5/1-5/8

• Setting algorithm parameters part of cal/val process

RFI Detection Algorithms

• Nine RFI detection algorithms used (thresholds selectable)

1) Pulse detection fullband

2) Kurtosis fullband

3) T3 and **4**) T4 fullband

5) Cross frequency @ 9.6 msec resolution

<u>6</u>) Kurtosis sub-band (spectrogram points)

<u>7)</u> T3 and <u>8)</u> T4 sub-band

9) Cross frequency @ 1.2 msec resolution

- All algorithms have a detection threshold (Beta) that can vary spatially, for fore/aft looks, and for ascending and descending passes
- Using 'two-sided' detectors to avoid introducing calibration biases
- The RFI flag outputs from all the detectors are combined using a logical OR to produce a maximum probability of detection array
- The flagged data are excluded from the average of good time-frequency samples to produce RFI free footprints
- Subset of RFI detection/mitigation algorithms also applied to cal data before computing cal coefficients
- All running currently with global beta=3 except 3rd/4th Stokes detectors set to very high thresholds

L1B RFI processor

- TA computed by averaging over 8x16 spectrogram
- RFI detection algorithms can flag pixels out
- RFI info in qual flag:
 bit 2: > 2 K RFI
 detected (info only)
 bit 3: < 2 pixels
 left in spectrogram

bit 4: NEDT>2 K bit 14: >100 K RFI detected

• NEDT after mitigation also output

Fullband detection algorithms operate at 4x finer time resolution; detection flags all channels of entire ~ 1.2 msec interval

Peak Hold TA H-pol R11850_001

Peak Hold TA filtered R11850_001

Peak Hold RFI H-pol (TA – TA filtered) R11850_001

Fullband Kurtosis May 1 to 8

Fullband Kurtosis May 1 to 8

SB MAXPD Detection Rate May 1 to 8

Time Domain Detection Rate May 1 to 8

Time Domain Detection Rate May 1 to 8

FAR Pulse Detector Coastline Example

Top figure shows flags when β is 3 globally

In bottom figure, β
is increased to 5
at the coastlines

Orbit 01309_D, scan 435

Variable Time Domain Thresholds

Variable Time Domain Thresholds

 β_{td} , number of stds above or below mean

Summary Ta_H Statistics

• 5/1-5/26/15, Global data

RFI Detection
Algorithms and
Quality Checks
Clearly Eliminate
Large RFI

~1% of Samples Have RFI >30K detected

NEDT and Fraction of Spectrogram Blanked Stats

• 5/1-5/26/15, H pol

- ~ 2% of data flagged for too high NEDT or NEDT not computable
- $\sim 2\%$ of data flagged for RFI overall (not including 'out of range' flag applied at TB level)

TA unfiltered Europe

Max H-pol Ta (K) CRID:11580_001

TA filtered Europe

Max H-pol Ta filtered (K) CRID:11580_001

TA filtered Europe

Max H-pol Ta filtered (K) CRID:11580_001

Discarding measurements flagged by TB quality flag, residual RFI appear to still be in product

TA unfiltered Asia

Max H-pol Ta (K) CRID:11580_001

0.25° grid

TA filtered Asia

Max H-pol Ta filtered (K) CRID:11580_001

TA filtered Asia

Max H-pol Ta filtered (K) CRID:11580_001

Discarding measurements flagged by TB quality flag, residual RFI appear to still be in product

Conclusions

- RFI detection and filtering working well in general, but some cases remain challenging
- For beta release of data, all thresholds for all detectors except the time domain are uniform over the globe
 - The time domain thresholds for the beta product were changed to be higher along the coastlines to reduce FAR in those areas
- 'Wideband continuous' RFI is not detected by pulse, kurtosis, or cross frequency methods
 - Can occur at modest power levels that are not obvious
 - Can occupy majority of SMAP's spectrum, not possible to recover Earth TB in these situations
 - At least need to make sure that algorithms are flagging these data out from further science processing