

SMAP Radiometer Beta-level Performance

- Beta-level Level 1 radiometer data from SMAP was available on the NASA NISIDC DAAC from 30th July 2015
- Beta-level calibration is of sufficient quality to enable reasonable soil moisture retrieval performance

Parameter	Beta-level	Requirement
NEDT	1.1 K	< 1.6 K
Geolocation accuracy	2.7 km	< 4 km
Land SMAP/SMOS comparison (H pol)	–0.54 K	n/a
Land SMAP/SMOS comparison (V pol)	–0.96 K	n/a

Geolocation assessment (Next talk – G. DeAmici)

Coastline direction	Geographical Area	Orbit #	Coast Geolocation Error (km)	After Yaw Adjustment (km)
N-S	SW Africa	1369_D	2.55	2.77
	W Australia	1394_D	1.55	1.80
	Madagascar	1405_A	3.06	2.10
	SW Africa	1413_D	2.33	2.62
	W Australia	1417_A	2.03	1.75
	Madagascar	1426_D	2.18	1.57
	Madagascar	1470_D	3.48	3.10
E-W	W Africa	1363_A		2.96
	Australia	1364_D		2.13
	W Africa	1370_D	3.13	2.85
	Australia	1402_A	3.54	3.28
	W Africa	1407_A	2.75	2.37
	Australia	1452_D	2.67	2.49
	Average		2.73	2.45

Front-end Calibration (Talk by J.Peng)

Front end calibration mostly stable – Bake-out showed a calibration bias

Expected TA and TA Comparison

Front-end Calibration (Talk by J.Peng)

 Another potential front-end issue is the emissive nature of front-end radome/reflector elements coupled with drift

TA and Expected TA Comparison

Drift calibration (Talk by J.Peng)

- TA's drifting when compared to the ocean L-band GMF model
- Also a bias from initial correction
- Beta-release Implements a time-varying Tnd to correct for drift
 - Aliased with front-end element drifts
 - Has minimal impact on land Tas.

Cold-sky Calibration (Talk by E. Dinnat)

- Beta release Three nominal CSC were performed: 04/23, 05/27, 06/30
- SMAP biased warmer than simulations 1.2K +/- 0.7K
- Bias stable between three CS maneuvers
- Scan dependent bias observed

Cold-sky Calibration (Talk by E. Dinnat)

- Special CSC Ocean/Land crossing to assess spillover correction
- Beta release Does not include correction yet
 - Details will be presented in E. Dinnat's talk
- Good agreement between observation and model

L- band Inter-comparison (Talk by R. Bindlish)

		RMSD (K)	R	Bias [SMAP-SMOS] (K)
H pol	Land	3.34	0.9708	-0.54
	Ocean	2.32	0.4991	-0.22
	Overall	2.61	0.9994	-0.30
V pol	Land	3.14	0.9746	-0.96
	Ocean	2.15	0.5505	0.16
	Overall	2.44	0.9995	-0.12

- SMAP/SMOS in good agreement over the full range.
- Aquarius
 - Comparisons over ice 4.5K Vpol/2.5K H-pol
 - Comparisons over land Smaller bias
 - Potentially due to different incidence angle, atmospheric correction, galactic correction
- Consolidating measurements from all three missions bigger than the betarelease or Cal/Val Phase I release.
- Intercal working group headed by D. Le Vine looking into the complexities of this issue

Reflected Galaxy Correction (by G. DeAmici)

- Reflected galaxy correction works on the first order
- Model improvements are being considered
 - Introduce "real" asymmetric beam pattern
 - Account for surface roughness (e.g. wind-speed)
 - Account for scan angle

RFI assessment (talk by P.Mohammed)

- Max-PD 9 algorithm approach very successful in detecting and mitigating RFI
- East China/Japan still problematic (for other L-band sensors as well)
- Information from data still being analyzed to improve upon algorithms

L1C Gridded Product (Talk by S. Chen)

 The L1C TB product is derived from the L1B TB product, which represents calibrated, geolocated, time-ordered TB observations acquired by the radiometer.

Backup

Faraday Rotation Correction (by D. LeVine)

- Correction looks reasonable over ocean
- Land assessment undergoing

Fore-Aft Bias (by G.DeAmici)

- Repeatable asymmetry in front/back bias
- Consistent between H,V,I components
- Cause probably not pointing error and is probably due to some antenna beam pattern asymmetry currently under study

