

Removing Radio Frequency Interferences is possible: The SMOS example

R. Oliva
SMAP CAL/VAL workshop
September 1, 2015

RFI situation

- SMOS, launched in 2009, was the first satellite to operate in L-band, but does not have any on-board hardware to filter RFI.
- Although active emissions in the protected band are illegal according to ITU-RR 5.340, RFI were globally present.

The SMOS team put in place several strategies to improve the RFI situation :

- 1. RFI detection and Flagging
- 2. Image mitigation techniques
- 3. Increase situation awareness
- 4. Support initiatives to improve regulatory framework
- Enforce countries to switch off illegal RFI

RFI in SMOS Observations:

SMOS observations show the presence of RFI RFI probability Map observed from 5th to 19th December 2014

Source: Philippe Richaume (CESBIO)

RFI in SMAP Observations:

Unfiltered SMAP observations show similar presence of RFI

Source: M. Aksoy

RFI in SMAP Observations:

Filtered SMAP observations remove most, but not all, RFI
However, filtering data has a cost in terms of radiometric noise and undetected
RFI is likely to be present in the data

Source: M. Aksoy

Approach to improve RFI situation

Detection / Reporting to Authorities / Cancellation of RFI source

- Identify, geo-locate and characterise the RFI sources
- Provide this information regularly to the National Spectrum Management Authorities so that they can **initiate investigations** in order to identify the type of emitter and **take appropriate actions**

This procedure has obtained important successes in eliminating RFI at L-band.

RFI evolution along SMOS mission

RFI presence over land masses

Clear reduction of RFI along the mission, particularly the stronger RFIs.

RFI CAN BE REMOVED!!

Conclusions

□RFI are an important threat to remote sensing missions
□On-board hardware and software to deal with RFI are a must in all new missions.
□But it is of main importance, not just for one mission, but for the rest of the scientific community to target RFIs from root
□The experience of SMOS shows that RFIs can be eliminated
□Cooperation between SMOS and SMAP can be very beneficial for both missions, and will strengthen a common L-band position in international organizations.

