

Improved Vegetation Parameterization for SMAP's Passive Retrieval Algorithms

Mehmet Kurum, Roger H Lang
The George Washington University
Department of Electrical and Computer Engineering
Washington, DC 20052

kurum@gwu.edu, lang@gwu.edu

Motivation: Passive Soil Moisture retrievals

Current Approach:

Land cover-driven look up table.

Given the complex vegetation structure:

- Empirical values.
- <u>Temporally static</u> vegetation conditions.
- Ancillary <u>optical</u> geophysical estimate.

Our aim:

- To <u>reduce/eliminate</u> SMAP's reliance on empirical indices from <u>optical</u> satellites for vegetation characterization.

Our approach:

- The <u>modified</u> tau-omega model*
- High-resolution radar within the passive inversion process
- <u>Dynamic</u> (i.e., temporally varying) vegetation parameterization.

Advantage of the approach:

- The complementary nature of <u>active and passive</u> remote sensing
- Joint-Physics based modeling
- Moderate (3-5 kg/m²) to Dense Vegetation(>5 kg/m²)

Overall Retrieval Algorithm

^{*} Legacy SMAP radar data, ALOS-2, Sentinel-1, Radarsat-2

Physical-based Vegetation Parameterization

Single Scattering vs. Effective Albedo

Kurum, RSE 2013

- Single-Scattering Albedo :
$$\omega_p(\theta) = \frac{\kappa_{sp}}{\kappa_{sp} + \kappa_{ap}}$$

- First-Order Effective Albedo :
$$\overline{\omega}_p^{(1)}(\theta) = \omega_p(\theta) - \frac{\Omega_p^{(1)}(\theta)}{[1 + \gamma_p(\theta)R_{qp}(\theta)][1 - \gamma_p(\theta)]}$$

VWC Estimation with Radar Ratios

The temporal patterns revealed by HV ratios are close to the measured VWC.

VWC estimated from CropScan measurements match the general trend of the measured VWC.

O'Neill et.al., IGARSS 2015

Summary

Our advantage:

- Extensive experience in vegetation modeling
- Various joint-physics and consistent combined active—passive vegetation models,
- Ability to determine <u>physical-based</u> tau and effective omega (the <u>modified</u> tau-omega model)

Dynamic parameterization:

- Varying vegetation attributes.
- Analysis by our joint-physics formulation.
- Plant growth models.
- Existing/post-launch field data.

Core Site Validation:

Evaluate the approach with <u>real SMAP data</u> over selected core sites

Extension to Large Scales:

- Temporal behaviors of vegetation.
- Heterogeneity impacts for selected target areas on a global basis.

• Improved SM retrievals:

 Quantitative assessments of vegetation effects for <u>moderately to densely vegetated</u> <u>areas</u>, leading to improved SMAP's SM retrievals.

Mehmet Kurum, Roger H Lang

The George Washington University
Department of Electrical and Computer Engineering
Washington, DC 20052

kurum@gwu.edu, lang@gwu.edu

Thank you...

Back-Up

Formulation - Radiative Transfer Theory Approach

The first-order solution from vegetation (**Kurum** et. al., 2011) leads to an expression given by

$$e_{sp}^{1} = 1 - \gamma_{p}^{2} R_{p} - \omega_{p} (1 + \gamma_{p} R_{p}) (1 - \gamma_{p}) + \Omega_{p}$$

where Ω_n denotes the additional scattering contribution to the zero-order model.

This solution can be put into a form similar to the tau-omega model by factoring $(1 + \gamma_p R_p)(1 - \gamma_p)$ from the last two terms:

$$e_{sp}^{1} = 1 - \gamma_{p}^{2} R_{p} - \overline{\omega}_{sp} (1 + \gamma_{p} R_{p}) (1 - \gamma_{p})$$

where we define a new RT-based parameter called *effective albedo*

$$\overline{\omega}_{sp} = \omega_p - \frac{\Omega_p}{(1 + \gamma_p R_p)(1 - \gamma_p)}$$

Formulation - Wave Theory Approach

Using the Distorted Born Approximation (Lang, 1981) and Using Peake's principle (**Peake**, 1959) that relates active and passive problems, emissivity of the vegetation layer can be written as

$$e_{ap}^1 = 1 - W_p^{spec} - W_p^{diff}$$

where

$$W_p^{spec} = \gamma_p^2 R_p \qquad W_p^{diff} = \frac{1}{4\pi \cos \theta} \int_{2\pi} \left[\sigma_{qq}^0 + \sigma_{pq}^0 \right] \cos \theta' \, d\Omega'$$

multiplying and dividing the last term (diffuse albedo term) by $(1 + \gamma R)(1 - \gamma)$, we obtain

$$e_{ap}^{1} = 1 - \gamma_{p}^{2} R_{p} - \overline{\omega}_{ap} (1 + \gamma_{p} R_{p}) (1 - \gamma_{p})$$

where we define a new active/passive parameter called *effective albedo*

$$\overline{\omega}_{ap} = \frac{W_p^{diff}}{(1 + \gamma_p R_p)(1 - \gamma_p)}$$