SMAPEX-4 Report and SMAPEX-5 Plan

Jeffrey Walker, Nan Ye, Xiaoling Wu, Christoph Rüdiger, Thomas Jackson, Dara Entekhabi, Richard DeJeu, Olivier Merlin, Edward Kim, Luigi Renzullo
Acknowledgements

- **ANU**: Siyun Tian
- **CESBIO**: Olivier Merlin, Vivien Stefan, Yoann Malbéteau
- **CSIRO**: Alan Marks, Luigi Renzullo, Paul Daniel
- **Geoscience Australia**: Fuqin Li
- **Juelich**: Francois Jonard, Philipp Pohlig
- **Maquarie University**: Ian Marang, Bradley Evans
- **MIT**: Dara Entekhabi
- **Monash University**: Ashley Wright, Christoph Rüdiger, Frank Winston, Jon Johansson, Muhsiul Hassan, Nan Ye, Sabah Sabaghy, Shuvashis Dey, Stefania Grimaldi, Xiaoling Wu, Ying Gao, Yuan Li
- **NASA**: Alicia Joseph, Amy McNally, Andreas Colliander, Edward Kim, Erika Podest, Grey Nearing, Kiersten Newtoff, Narendra Das, Jared Entin, Simon Yueh
- **UNSW**: Chiara Callipari, Robert Parinussa, Seokhyeon Kim, Wasin Chaivaranont
- **USDA**: Alex White, John Prueger, Lynn McKee, Thomas Jackson
- **VUA**: Anouk Gevaert, Richard DeJeu
SMAP Experiments (SMAPEx)

- **SMAP pre-launch** airborne field campaigns were required to:
 - Develop/test SMAP baseline radar algorithm for bare and vegetated soil;
 - Develop/test SMAP radiometer algorithm for vegetated surfaces;
 - Develop/test SMAP merged active and passive algorithm.

- **SMAP post-launch** airborne field campaigns are required to:
 - Evaluate SMAP active-passive downscaled 9km radiometer observations;
 - Inter-compare between airborne, SMAP, Aquarius, and SMOS radiometer and radar observations;
 - Validate SMAP SM_P, SM_A, SM_AP retrieval algorithms using airborne soil moisture retrieval results (SMAPEx) and monitoring network (OzNet);
 - Further develop radar only soil moisture retrieval algorithms;
 - Develop/test alternative spatial enhancement algorithms.
Monitoring station network
SMAP 3-dB effective field-of-view

Source: SMAP L1B TB ATBD

<table>
<thead>
<tr>
<th>Distance to nadir [km]</th>
<th>Scan angle [°]</th>
<th>Spacing [m]</th>
<th>Azimuth [°]</th>
<th>Looking</th>
<th>Minimum extent width [m]</th>
<th>Minimum extent length [m]</th>
</tr>
</thead>
<tbody>
<tr>
<td>370</td>
<td>48.6</td>
<td>20,175</td>
<td>60.6</td>
<td>F</td>
<td>68,178</td>
<td>60,558</td>
</tr>
<tr>
<td>-460</td>
<td>66.9</td>
<td>11,578</td>
<td>143.6</td>
<td>B</td>
<td>62,817</td>
<td>67,114</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>-54.9</td>
<td>F</td>
<td>60,312</td>
<td>57,472</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>-101.1</td>
<td>B</td>
<td>60,207</td>
<td>52,349</td>
</tr>
<tr>
<td>-180</td>
<td>21.1</td>
<td>28,857</td>
<td>-9.1</td>
<td>F</td>
<td>54,645</td>
<td>77,050</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>-146.9</td>
<td>B</td>
<td>66,521</td>
<td>74,945</td>
</tr>
</tbody>
</table>
Conservative coverage for SMAP

Option 1
68.2 km

Option 2
68.2 km

77.1 km
Conservative coverage for Aquarius

Revisit time: Exact 7 days
Beam number: 3
Incidence angle [°]: 28.7, 37.8, 45.6
Foot print size [km]: 74 × 94, 84 × 120, 96 × 156
Minimum extent width [km]: 113.7
Minimum extent length [km]: 89.2
Flight coverage selection

Option 1, option 2, or alternating?
SMAPEx-4 flight area for SMAP

Land Use

Topography

Legend
- Original Site
- New Site
- Cluster Site
- SMAP EASE-2 3km Grid
- SMAP EASE-2 9km Grid
- SMAP EASE-2 36km Grid
- SMAPEx-3 Study Area
- SMAPEx-4 Study Area
- Conservative Coverage for SMAP

71 km

85 km

DEM [m]
- High: 450
- Low: 90

NSW Land Use Classification
- Conservation Area
- Cropping
- Grazing
- Wetland
- Horticulture
- River & Drainage System
- Mining & Quarrying
- Urban & Transport
- Others
SMAPEx-4 study area and schedule

Red=lost data Blue=gained data Green=regional sampling route

<table>
<thead>
<tr>
<th>UTC date</th>
<th>Flight</th>
<th>Ground</th>
<th>SMAP</th>
</tr>
</thead>
<tbody>
<tr>
<td>05-02</td>
<td>Flight 1</td>
<td>Intensive</td>
<td>A + P</td>
</tr>
<tr>
<td>05-03</td>
<td>Flight 2</td>
<td>Intensive</td>
<td>A + P</td>
</tr>
<tr>
<td>05-04</td>
<td>Flight 3</td>
<td>Regional</td>
<td></td>
</tr>
<tr>
<td>05-05</td>
<td>Flight 3</td>
<td>Intensive</td>
<td>A + P</td>
</tr>
<tr>
<td>05-06</td>
<td>Flight 4</td>
<td>Regional</td>
<td></td>
</tr>
<tr>
<td>05-07</td>
<td>Flight 5 (AQ)</td>
<td>Intensive</td>
<td>A + P</td>
</tr>
<tr>
<td>05-08</td>
<td>Flight 6</td>
<td>Intensive</td>
<td>A + P</td>
</tr>
<tr>
<td>05-09</td>
<td>Flight 7</td>
<td>Regional</td>
<td></td>
</tr>
<tr>
<td>05-10</td>
<td>Flight 8</td>
<td>Intensive</td>
<td>A + P</td>
</tr>
<tr>
<td>05-11</td>
<td>Flight 9</td>
<td>Regional</td>
<td></td>
</tr>
<tr>
<td>05-12</td>
<td>Flight 9</td>
<td>Regional</td>
<td></td>
</tr>
<tr>
<td>05-13</td>
<td>Flight 9</td>
<td>Regional</td>
<td></td>
</tr>
<tr>
<td>05-14</td>
<td>Flight 9</td>
<td>Regional</td>
<td></td>
</tr>
<tr>
<td>05-15</td>
<td>Flight 9</td>
<td>Regional</td>
<td></td>
</tr>
<tr>
<td>05-16</td>
<td>Flight 9</td>
<td>Regional</td>
<td></td>
</tr>
<tr>
<td>05-17</td>
<td>Flight 9</td>
<td>Regional</td>
<td></td>
</tr>
<tr>
<td>05-18</td>
<td>Flight 9</td>
<td>Regional</td>
<td></td>
</tr>
<tr>
<td>05-19</td>
<td>Flight 9</td>
<td>Regional</td>
<td></td>
</tr>
<tr>
<td>05-20</td>
<td>Flight 9</td>
<td>Regional</td>
<td></td>
</tr>
<tr>
<td>05-21</td>
<td>Flight 9</td>
<td>Regional</td>
<td></td>
</tr>
</tbody>
</table>
Airborne sampling

PLMR: Polarimetric L-band Multibeam Radiometer
- Frequency/bandwidth: 1.413GHz/24MHz
- Polarisations: V and H
- Resolution: ~1km at 10,000ft flying height,
 Incidence angles: $\pm 7^\circ$, $\pm 21.5^\circ$, $\pm 38.5^\circ$ across track
- Antenna type: 8x8 patch array

PLIS: Polarimetric L-band Imaging SAR:
- Frequency/bandwidth: 1.26GHz/30MHz
- Polarisations: VV, VH, HV and HH
- Resolution: ~10m
- Incidence angles: 15° - 45° on both sides of aircraft
- Antenna type: 2x2 patch array
Airborne sampling strategy

- **Altitude:**
 10,000ft (AGL)

- **Ground resolution:**
 1km (PLMR)
 10m (PLIS)
Airborne sampling coverage

- **~7hr**
 - 100% PLMR coverage
 - 61% PLIS coverage

- **~7.5hr**
 - 72% PLMR coverage
 - 47% PLIS coverage
Ground sampling

- **Ground validation data**
 - Continuous soil moisture at 29 sites
 - Continuous TIR/soil temperature, soil moisture, leaf wetness at six temporary sites
 - Six 3km x 3km focus areas
 - Soil moisture @ 250m spacing
 - Regional soil moisture sampling
 - Vegetation biomass, water content, LAI, reflectance @ 5 sites per dominant vegetation type
 - Surface roughness @ 3 sites per dominant vegetation type
 - Supplementary data from vehicle-based L-band radiometer, etc.
OzNet data
SMAPEX-4 1km TB

Topography

2015-05-02

2015-05-03

2015-05-05

2015-05-10

TBh [K]

260

160

85 km

71 km

Land Use
- Conservation Area
- Cropping
- Grazing
- Wetland
- Horticulture
- River & Drainage System
- Mining & Quarrying
- Urban & Transport
- Others

rd September 2015 | 18
SMAP TB vs SMAPEX-4 TB @ 36km

Note: a single linear adjustment was applied in order to remove any offset between SMAP and PLMR
SMAPEx-4 and SMAP 9km TB

05-02 05-05 05-10 05-11 05-19 05-21 TBh [K]

SMAP 9km TBh

PLMR 9km TBh

H-pol V-pol R H-pol V-pol RMSE Topography

Land Use:
- Conservation Area
- Cropping
- Grazing
- Mining & Quarrying
- Urban & Transport
- Wetland
- Horticulture
- River & Drainage System
- Others

MONASH University
SMAP TB vs SMAPEX-4 TB @ 9km

H-pol

- SMAPEX-4 1km TB averaged at 9km [K]
- SMA downsampled 9km TB V199 [K]
- R=0.858 RMSE=10.9

V-pol

- SMAPEX-4 1km TB averaged at 9km [K]
- SMA downsampled 9km TB V199 [K]
- R=0.857 RMSE=7.9

UTC date

- 0521
- 0519
- 0511
- 0510
- 0505
- 0502
SMAP SM vs Station SM @ 3km (Crop)
SMAP SM vs Station SM @ 3km (Grass)

SMAP SM vs Station SM @ 3km (Grass)
SMAP SM vs SMAPEX-4 SM @3km

Graph:
- **Legend:**
 - Cropland: R=0.26, RMSE=0.073
 - Pasture: R=0.95, RMSE=0.176

Y-axis: SMAPEx-4 250m SM averaged to 3km [m^3/m^3]

X-axis: SMAP L2 3km A SM V199 [m^3/m^3]
Conclusion

- Results are still preliminary, but:
 - SMAP 36km passive SM has a good temporal agreement with the most representative station at Yanco; the agreement at Kyeamba is not so good;
 - A similar spatial pattern was captured by SMAP 9km downscaled TB and SMAPEX-4 TB averaged at 9km, but the RMSE is ~8-10K;
 - SMAP 3km active SM has higher correlation over pasture than cropland

- SMAPEX-5 is scheduled for 6-28 September 2015

Follow us at smapex4.blogspot.com smapex5.blogspot.com

Follow us at smapex4.blogspot.com smapex5.blogspot.com
SMAPEX-5 plan

Local Date
<table>
<thead>
<tr>
<th>Day</th>
<th>SMAP</th>
<th>SMOS</th>
<th>PALSAR-2</th>
<th>Sentinel-1A</th>
<th>RadarSat-2</th>
<th>Landsat-7</th>
<th>Landsat-8</th>
<th>Sentinel-2A</th>
<th>Flight</th>
</tr>
</thead>
<tbody>
<tr>
<td>6/09</td>
<td>Sun</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>7/09</td>
<td>Mon</td>
<td>○</td>
<td>○</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>8/09</td>
<td>Tues</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>9/09</td>
<td>Wed</td>
<td>●</td>
<td>○</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>10/09</td>
<td>Thurs</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>11/09</td>
<td>Fri</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>12/09</td>
<td>Sat</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>13/09</td>
<td>Sun</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>14/09</td>
<td>Mon</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>15/09</td>
<td>Tues</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>16/09</td>
<td>Wed</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>17/09</td>
<td>Thurs</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>18/09</td>
<td>Fri</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>19/09</td>
<td>Sat</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>20/09</td>
<td>Sun</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>21/09</td>
<td>Mon</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>22/09</td>
<td>Tues</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>23/09</td>
<td>Wed</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>24/09</td>
<td>Thurs</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>25/09</td>
<td>Fri</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>26/09</td>
<td>Sat</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>27/09</td>
<td>Sun</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>28/09</td>
<td>Mon</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td></td>
</tr>
</tbody>
</table>

Legend
- **Original Site**
- **SMAP EASE-2 36km Grid**
- **SMAP EASE-2 9km Grid**
- **SMAP Ex-5 Flight Area**
- **Ground Sampling Area**
- **SMAPEx-5 Focus Farm**
- **Narrandera Airport**

Symbols
- ●: Fully cover
- ○: Partly cover
- N: Night overpass
- F: Full polarization
- ◼: Close to swath edge

Maps
- Flight sampling
- Travel
- Day off

MONASH University

SMAPEX-4 Report and SMAPEX-5 Plan

3rd September 2015 | 26