National Aeronautics and Space Administration

Soil Moisture Active Passive Mission SMAP

CalVal Workshop #6 Sept 1-3, 2015 L2/3 Radar-only 3km Soil Moisture Validation

Seungbum Kim, Joel Johnson*, Mahta Moghaddam**, Leung Tsang***, Jakob van Zyl, Andreas Colliander Jet propulsion lab/ California Inst. Technology, OSU, **USC, ***UMich

3km soil moisture retrieval algorithms

- Baseline [Kim et al. 2014]
 - Inversion of a radar forward model (overbar denotes parameters to retrieve).

 $C(\overline{s}, \overline{e}_{r1}, \overline{e}_{r2}, ..., \overline{e}_{rN}) = w_{1,HH}(S_{HH,1}^{0} - S_{HH,fwd}^{0}(\overline{s}, \overline{e}_{r1}, VWC_{1}) + \overline{c})^{2} + w_{1,VV}(S_{VV,1}^{0} - S_{VV,fwd}^{0}(\overline{s}, \overline{e}_{r1}, VWC_{1}) + \overline{c})^{2} + w_{2,HH}(S_{HH,2}^{0} - S_{HH,fwd}^{0}(\overline{s}, \overline{e}_{r2}, VWC_{2}) + \overline{c})^{2} + w_{2,VV}(S_{VV,2}^{0} - S_{VV,fwd}^{0}(\overline{s}, \overline{e}_{r2}, VWC_{2}) + \overline{c})^{2} + + w_{N,HH}(S_{HH,N}^{0} - S_{HH,fwd}^{0}(\overline{s}, \overline{e}_{rN}, VWC_{N}) + \overline{c})^{2} + w_{N,VV}(S_{VV,N}^{0} - S_{VV,fwd}^{0}(\overline{s}, \overline{e}_{rN}, VWC_{N}) + \overline{c})^{2}$

- Option algorithm II. [Wagner et al. 1999]
 - Relative Change Index

$$Ms = \frac{(S_{VV}^{dB} - S_{VV}^{\min,dB})}{(S_{VV}^{\max,dB} - S_{VV}^{\min,dB})}$$

JD

JD

Option algorithm III [Y.Kim/vanZyl 2009]

- Currently, Ms*porocity
$$Mv = C_0 + C_1 \frac{(S_{HH}^{ab} + S_{VV}^{ab})}{2}$$

- Stand-alone options:
 - Jeff Ouellette, OSU [Mattia et al. 2009]
 - And more

*

3km soil moisture retrieval algorithms

Major inputs and outputs

	Input	Output
Baseline	HH, VV VWC ancillary, HV* Datacubes Landcover map	Soil moisture Surface roughness VWC*
Change-index	VV Aquarius-based reference	Change index
Change-index-absolute	VV, (optionally) HH Aquarius-based reference Porosity Linear coefficients*	Soil moisture
Common	Soil temperature Masks (urban, vegetation, topography, water) Texture	
lot implemented vet		

3km soil moisture-baseline

May 18-25 (8 day repeat cycle). Exclude nadir gap. Success: surface temperature & landcover (ice, snow, static water, urban)

3km soil moisture – change index

Reference states: 1-year-long Aquaris data (2014) Gaps in EU and USA are due to the gaps in Aquarius reference (RFI related).

3km soil moisture – change index absolute

Active minus Passive (of unbiased anomaly)

 $\begin{array}{l} \Delta = \mbox{Active minus Passive} \\ \Delta 1 \ (\mbox{May 10 to 17}) = \ensuremath{\delta 1(t)} + \mbox{bias} \\ \Delta 2 \ (\mbox{May 18 to 25}) = \ensuremath{\delta 2(t)} + \mbox{bias} \\ \mbox{Double difference (DD) = (\ensuremath{\delta 1(t)} - \ensuremath{\delta 2(t)})/\ensuremath{\sqrt{2}} \\ \mbox{Currently only 2 repeat cycle L2SMA is available, so cannot estimate bias.} \end{array}$

L2SMA analysis: CalVal core sites

- Best chance for success or understanding of retrieval
 - Goal: solicit insights from CalVal coresite partners
- The plots were made by smapm_ac_match_a1_150831.pro

[©] California Institute of Technology, 2015. Government sponsorship acknowledged.

 Yanco4: compared with Yanco3, s0 variation is very large (while mvt is the same; RVI is lower) → large swings of retrieval. Azimuth effect not obvious.

© California Institute of Technology, 2015. Government sponsorship acknowledged.

© California Institute of Technology, 2015. Government sponsorship acknowledged.

Improvement of Retrieval

Unknown	Input	Degrees Freedom
N (Mv)+1 (s)	2N (HH, VV)	N< <2N (Konig et al. 15)
7	14	10

Estimating bias? Adjusting VWC?

Bias is

removed

VWC reduced based on in situ information from Marc Thibeault

NRCS, dB -20 -25 0.6 **♦** qood 0.5 pv,cm3/cm3 ♦ ňoRe 🔷 fail 0.4 🔷 noAtt 0.3 ♦ InSitu ৾৵ **\$\$\$** 0.2 0.1 Undulations are due to o.g 1.0 s0. Appear to be azimuth 0.8 VWC,kg/m2 angle dependent - but 3 0.6 Ř not applicable later 0000 0000 0000 000 0.4 000 00 2 Topography can lead to 0.2 500 <u>g</u>.0 azimuth effect and bias. Ô 0 ٥ ٥ E C 400 4 XtrkDist,km roughness, 300 3 8000 80 8000 8000 200 🏚 0 000 100 0 0 0 130 140 150 160 170 180 190 Day of Year

-5

-10

-15

° 0° 0 00

onzi.25010301,Sayan

88

0

0

♦ HH ♦ VV

VH

Qflaq

Some spikes in sigma0 are due to nadir pixels – not all.

- site 301 on the day ~160 and day 170: poor retrievals follow sigma0.
- site 302 has smaller sigma0 than site 301 but input VWC is the same → drier retrieval. RVI is smaller. Need to adjust VWC

Statistics (T11830-199)

2015/05/08 - 2015/07/09

Performance Metrics by Land Cover Class (IGBP)

Land Cover	Ref Pixel	ubRMS	E Bias	RMSE	R
Croplands	St Josephs (1606-03-01)	0.033	-0.148	0.151	0.506
-	Kenaston (2701-03-01)	0.000	-0.102	0.102	NaN
	Kenaston (2701-03-02)	NaN	NaN	NaN	NaN
	Monte Buey (1902-03-01)	NaN	NaN	NaN	NaN
	Valencia (4101-03-01)	0.035	-0.083	0.090	0.508
	Yanco (0701-03-01)	0.055	-0.041	0.069	0.687
	MEAN:	0.031	-0.094	0.103	0.567
Grasslands	Walnut Gulch (1601-03-01)	NaN	NaN	NaN	NaN
	TxSON (4801-03-01)	0.063	0.048	0.079	0.541
	TxSON (4801-03-02)	0.041	-0.075	0.086	0.880
	Yanco (0701-03-02)	0.051	0.036	0.063	0.800
	Yanco (0701-03-03)	0.020	0.021	0.029	0.367
	Yanco (0701-03-04)	0.035	0.338	0.339	1.000
	MEAN:	0.042	0.073	0.119	0.718
Shrub open	Walnut Gulch (1601-03-02)	NaN	NaN	NaN	NaN
-	MEAN:	NaN	NaN	NaN	NaN

Stats do not include the improvements by debiasing.

7

Summary

- Core site validation
 - ubRMSE ranging from 0.03 to 0.04 cm3/cm3
 - Reduction of the retrieval bias improves the results.
- Sites not presented
 - Zapotes (Tabasco), EURAC: past time-series s0 is not generated due to static water flag and mountain flag (will overide to enable retrieval).
 - Finnish sites: challenging (organic soil, wetland)
- Information needed to improve cropland retrieval
 - Crop type
 - VWC
 - Change in surface roughness: tillage?

Sources of Errors

NASA

Plans and milestones

- L2 beta release in Sept. 2015 (L2SMP)
- Validated product release (May 2016)

Major task (in the order of importance)	Milestone
A. L1C calibration (xtrack anomaly, RFI)	done
B. Forward model evaluation (wrt SMAP s0)	end Sept
C. Understand/Improve core-site validation	end Aug (\checkmark)
D. Understand/Improve failures/no-recommend	end Aug (\checkmark)
E. Iterative (or VWC) retrieval implementation	end Sept
F. Analyze product intercomparison	mid Sept
H. Topography & heterogeneity	May 2016
K. Flags: rationalize	May 2016
L. Ascending track retrieval	Open
M. Error bars	May 2016