National Aeronautics and Space Administration

Soil Moisture Active Passive Mission SMAP

SMAP Enhanced Passive Soil Moisture Products

Steven Chan, JPL Peggy O'Neill, NASA GSFC Rajat Bindlish, NASA GSFC Tom Jackson, USDA ARS Scott Dunbar, JPL Andreas Colliander, JPL Fan Chen, USDA, SSAI

SMAP Canada Workshop May 16-17, 2017 University of Guelph Ontario, Canada

- SMAP Data Product Status
- Enhanced Passive Soil Moisture Product
- Validation strategy
- Assessment
- Conclusion

Products in **boldface** are or will be in routine operational production

Product	Description	Gridding (Resolution)	Latency	Data Type
L1A_Radiometer	Radiometer Data in Time Order	-	12 hrs	
L1A_Radar	Radar Data in Time Order	-	12 hrs	
L1B_TB	Radiometer T _B in Time Order	(36 x 47 km)	12 hrs	
L1B_S0_LoRes	Low Resolution Radar σ_o in Time Order	(5 x 30 km)	12 hrs	Instrument Data
L1C_S0_HiRes	High Resolution Radar σ_o on EASE Grid 2.0	1 km (1 – 3 km)	12 hrs	
L1C_TB	Radiometer T _B on EASE Grid 2.0	36 km	12 hrs	
L1C_TB_E (★)	Radiometer T _B on EASE Grid 2.0 (Enhanced)	9 km	12 hrs	
L2_SM_A	Soil Moisture (Radar)	3 km	24 hrs	
L2_SM_P	Soil Moisture (Radiometer)	36 km	24 hrs	
L2_SM_P_E (★)	Soil Moisture (Radiometer, Enhanced)	9 km	24 hrs	(Half-Orbit)
L2_SM_AP	Soil Moisture (Radar + Radiometer)	9 km	24 hrs	
L2_SM_SP (**)	Soil Moisture (Sentinel Radar + Radiometer)	3 km	Best effort	
L3_FT_A	Freeze/Thaw State (Radar)	3 km	50 hrs	
L3_FT_P	Freeze/Thaw State (Radiometer)	36 km	50 hrs	
L3_FT_P_E (★)	Freeze/Thaw State (Radiometer, Enhanced)	9 km	50 hrs	
L3_SM_A	Soil Moisture (Radar)	3 km	50 hrs	(Daily Composite)
L3_SM_P	Soil Moisture (Radiometer)	36 km	50 hrs	
L3_SM_P_E (★)	Soil Moisture (Radiometer, Enhanced)	9 km	50 hrs	
L3_SM_AP	Soil Moisture (Radar + Radiometer)	9 km	50 hrs	
L4_SM	Soil Moisture (Surface and Root Zone)	9 km	7 days	Science
L4_C	Carbon Net Ecosystem Exchange (NEE)	9 km	14 days	Value-Added

★ Radiometer-based enhanced products were released in Dec 2016

- SMAP: Soil Moisture Active Passive
 - > L-band (1.4 GHz) radar and radiometer for global mapping of soil moisture and F/T state
 - Radiometer in good health, though radar stopped working in July 2015
 - > On orbit since Jan 31, 2015, returning more than 2 years of radiometer data
 - Soil moisture retrieval accuracy reached 0.04 m³/m³ (ubRMSE) over non-frozen land surfaces that are free of excessive snow, ice, mountainous terrain, and dense vegetation coverage
 - Recent releases in December, 2016:
 - SPL2SMP_E (verison 1): Enhanced 9 km passive soil moisture product
 - SPL2SMP (version 4): Standard 36 km passive soil moisture product (both AM & PM)
 - Product and documentation available on https://nsidc.org/data/smap/data_versions

- E in SPL2SMP_E:
 - An enhanced version of standard SPL2SMP
 - [a] finer grid resolution analogy: go from SD to HD in TV "resolution"
 - [b] native resolution comparable to SMAP radiometer FOV
- Achieve finer grid resolution through
 - Backus-Gilbert optimal interpolation on 9 km EASE Grid 2.0 (three projections)
- Same inversion algorithms and ancillary data as L2/3_SM_P

	Enhanced Product	Standard Product
Grid Posting	9 km	36 km
Ancillary Data Grid Posting	3 km	3 km
Contributing Inversion Domain	33 km	36 km
LTDN / LTAN	6:00 am and 6:00 pm	6:00 am and 6:00 pm
Granularity	Half orbit	Half orbit
Primary Input	Enhanced 9 km L1C_TB_E	Standard 36 km L1C_TB
Baseline Algorithm	V-pol Single Channel Algorithm	V-pol Single Channel Algorithm

0.00

0.05

0.10

0.15

0.20

0.25

Enhanced Passive Soil Moisture Product

soil moisture mapping during the 2016 Louisiana flood

Enhanced SMAP Passive Soil Moisture Product (9 km grid resolution)

Standard SMAP Passive Soil Moisture Product (36 km grid resolution)

0.30

Enhanced Passive Soil Moisture Product

NASA

soil moisture variability along transect

SMAP Canada Workshop • Ontario, Canada • May 16-17, 2017

Enhanced Passive Soil Moisture Product

soil moisture variability along transect

The enhanced product displays more visible spatial features than the standard product. An example is shown in the highlighted area where the enhanced product captures a peak but the standard product doesn't.

SMAP Canada Workshop • Ontario, Canada • May 16-17, 2017

Validation Strategy

L2SMP_E Contributing Domain is 33 km

- L2SMP_E data posted on 9 km EASE Grid 2.0 (black box)
- Assessed at 33 km scale (red box) to match SMAP radiometer FOV (blue box) as much as possible
- Individual CVS in situ data rescaled to accommodate these dimensions

Part 1: Assessment of L2SMP_E

in situ data from core validation sites

Core Validation Sites

CVS Name	Site PI	Area	Climate Regime	IGBP Land Cover
Walnut Gulch ^{1,2}	M. Cosh	USA (Arizona)	Arid	Shrub open
Reynolds Creek ^{1,2}	M. Cosh	USA (Idaho)	Arid	Grasslands
Fort Cobb ^{1,2}	M. Cosh	USA (Oklahoma)	Temperate	Grasslands
Little Washita ^{1,2}	M. Cosh	USA (Oklahoma)	Temperate	Grasslands
South Fork ^{1,2}	M. Cosh	USA (Iowa)	Cold	Croplands
Little River ^{1,2}	M. Cosh	USA (Georgia)	Temperate	Cropland/natural mosaic
TxSON ^{1,2}	T. Caldwell	USA (Texas)	Temperate	Grasslands
Kenaston ^{1,2}	A. Berg	Canada	Cold	Croplands
Carman ^{1,2}	H. McNairn	Canada	Cold	Croplands
Monte Buey ^{1,2}	M. Thibeault	Argentina	Arid	Croplands
REMEDHUS ^{1,2}	J. Martinez	Spain	Temperate	Croplands
Valencia ²	E. Lopez-Baeza	Spain	Arid	Woody Savannas
Twente ¹	Z. Su	Netherlands	Cold	Cropland/natural mosaic
HOBE ^{1,2}	F. Udall	Denmark	Temperate	Croplands
MAHASRI ¹	J. Asanuma	Mongolia	Cold	Grasslands
Yanco ^{1,2}	J. Walker	Australia	Arid	Croplands
1 = CVS used in L2_SM_ 2 = CVS used in L2_SM_	_P and L2_SM_P_E asse _P_E assessment at 9 km	ssment		

in situ data from core validation sites

- Overall SMAP retrieval compares well with in situ data scaled to match satellite FOV
- Certain sites (e.g. Little River) exhibit moderate bias despite good correlation
- SCA-V delivers the best performance

Part 1: Assessment of 6:00 AM L2SMP_E

in situ data from core validation sites

	CVS	ubRMSE (m³/m³)		Bias (m ³ /m ³)			RMSE (m³/m³)				R		N			
	CV3	SCA-H	SCA-V	DCA	SCA-H	SCA-V	DCA	SCA-H	SCA-V	DCA	SCA-H	SCA-V	DCA	SCA-H	SCA-V	DCA
	Reynolds Creek	0.039	0.040	0.057	-0.059	-0.023	0.007	0.071	0.046	0.058	0.572	0.598	0.558	86	97	96
	Walnut Gulch	0.021	0.024	0.038	-0.011	0.011	0.035	0.024	0.026	0.052	0.759	0.813	0.800	93	118	115
	TxSON	0.031	0.032	0.041	-0.064	-0.015	0.056	0.071	0.036	0.069	0.935	0.921	0.827	153	153	152
	Fort Cobb	0.032	0.028	0.045	-0.086	-0.056	-0.017	0.091	0.062	0.048	0.858	0.883	0.817	244	247	247
	Little Washita	0.023	0.022	0.042	-0.062	-0.027	0.026	0.066	0.035	0.050	0.911	0.920	0.837	246	246	245
	South Fork	0.062	0.054	0.054	-0.071	-0.062	-0.050	0.094	0.082	0.074	0.597	0.646	0.637	159	162	162
	Little River	0.034	0.028	0.041	0.048	0.087	0.144	0.059	0.092	0.150	0.871	0.887	0.755	229	229	229
	Kenaston	0.034	0.022	0.040	-0.064	-0.040	-0.001	0.072	0.046	0.040	0.808	0.854	0.515	145	145	145
	Carman	0.094	0.056	0.053	-0.087	-0.088	-0.077	0.128	0.104	0.093	0.463	0.611	0.535	157	158	158
	Monte Buey	0.075	0.051	0.042	-0.022	-0.020	-0.025	0.078	0.055	0.049	0.754	0.840	0.724	126	135	137
	REMEDHUS	0.037	0.042	0.054	-0.024	-0.007	0.010	0.044	0.042	0.055	0.897	0.872	0.837	197	196	189
	Twente	0.072	0.056	0.056	0.003	0.013	0.028	0.072	0.057	0.063	0.888	0.885	0.784	238	242	241
	HOBE	0.048	0.036	0.063	0.004	-0.009	-0.012	0.048	0.037	0.064	0.700	0.863	0.789	104	104	104
	MAHASRI	0.032	0.036	0.036	-0.009	-0.006	-0.006	0.033	0.037	0.037	0.736	0.728	0.730	139	102	116
	Yanco	0.051	0.043	0.045	0.000	0.020	0.035	0.051	0.048	0.057	0.960	0.964	0.943	170	172	170
Enhanced	L2_SM_P_E SMAP average vs 33 km <i>in situ</i>	0.046	0.038	0.047	-0.034	-0.015	0.010	0.067	0.054	0.064	0.781	0.819	0.739			
	SMOS average vs 33 km <i>in situ</i>		0.051			-0.023			0.072			0.698				
Standard	L2_SM_P SMAP average vs 36 km <i>in situ</i>	0.044	0.037	0.043	-0.033	-0.014	0.010	0.065	0.052	0.063	0.796	0.822	0.738			
	SMOS average vs 36 km <i>in situ</i>		0.051			-0.024			0.072			0.713				

- Enhanced L2SMP_E shows comparable performance as standard L2SMP
- Both products exceeded SMAP mission objective (retrieval accuracy ~ 0.040 m³/m³ or better)

Part 1: Assessment of 6:00 PM L2SMP_E

in situ data from core validation sites

	cve	ubRMSE (m³/m³)		Bi	as (m³/n	1 ³)	RMSE (m ³ /m ³)			R			N			
	CV3	SCA-H	SCA-V	DCA	SCA-H	SCA-V	DCA	SCA-H	SCA-V	DCA	SCA-H	SCA-V	DCA	SCA-H	SCA-V	DCA
	Reynolds Creek	0.046	0.042	0.060	-0.075	-0.042	-0.005	0.088	0.059	0.060	0.452	0.651	0.630	79	106	96
	Walnut Gulch	0.027	0.029	0.042	-0.031	-0.019	-0.000	0.041	0.034	0.042	0.622	0.676	0.631	102	165	141
	TxSON	0.028	0.028	0.033	-0.058	-0.018	0.031	0.065	0.034	0.045	0.930	0.929	0.893	178	178	178
	Fort Cobb	0.039	0.035	0.046	-0.087	-0.069	-0.046	0.096	0.077	0.065	0.811	0.846	0.778	240	251	245
	Little Washita	0.027	0.026	0.042	-0.057	-0.032	0.000	0.063	0.041	0.042	0.909	0.910	0.835	259	259	258
	South Fork	0.053	0.045	0.061	-0.084	-0.087	-0.074	0.099	0.098	0.095	0.710	0.764	0.668	172	171	171
	Little River	0.036	0.029	0.041	0.050	0.078	0.115	0.062	0.083	0.122	0.885	0.872	0.683	193	193	193
	Kenaston	0.033	0.027	0.052	-0.065	-0.051	-0.024	0.073	0.057	0.057	0.833	0.828	0.515	186	186	186
	Carman	0.087	0.049	0.051	-0.102	-0.109	-0.101	0.134	0.120	0.113	0.406	0.594	0.505	161	162	162
	Monte Buey	0.075	0.052	0.046	0.007	-0.019	-0.050	0.075	0.056	0.067	0.848	0.874	0.722	107	113	113
	REMEDHUS	0.041	0.045	0.055	-0.029	-0.018	0.006	0.050	0.048	0.056	0.856	0.857	0.781	168	184	156
	Twente	0.068	0.052	0.051	0.006	0.001	-0.001	0.069	0.052	0.051	0.897	0.903	0.834	272	274	274
	HOBE	0.046	0.042	0.069	0.003	-0.013	-0.019	0.046	0.044	0.071	0.711	0.844	0.811	106	106	106
	MAHASRI	0.032	0.038	0.037	-0.017	-0.018	-0.017	0.036	0.042	0.041	0.747	0.700	0.706	110	79	82
	Yanco	0.060	0.053	0.052	0.004	0.011	0.013	0.060	0.054	0.054	0.966	0.966	0.940	201	203	199
Enhanced	L2_SM_P_E SMAP average vs 33 km <i>in situ</i>	0.047	0.039	0.049	-0.036	-0.027	-0.011	0.070	0.060	0.066	0.772	0.814	0.729			
	SMOS average vs 33 km <i>in situ</i>		0.052			-0.029			0.071			0.721				
Standard	L2_SM_P SMAP average vs 36 km <i>in situ</i>	0.046	0.039	0.047	-0.037	-0.028	-0.015	0.071	0.061	0.066	0.772	0.795	0.700			
	SMOS average vs 36 km <i>in situ</i>		0.053			-0.028			0.072			0.710				

- Enhanced L2SMP_E shows comparable performance as standard L2SMP
- Both products exceeded SMAP mission objective (retrieval accuracy ~ 0.040 m³/m³ or better)

Cumulative Retrieval Performance

in situ data from core validation sites

Enhanced Passive Soil Moisture Product

- Passive soil moisture product demonstrates stable performance about 4–5 months into cal/val
- Metrics generally improved over time; however, some asymptotic limits apparently reached

Part 2: Assessment of L2SMP_E

in situ data from sparse networks

Sparse Networks

Sparse Network Name	Site PI/Contact	Area	No. of Sites
NOAA Climate Reference Network (CRN)	M. Palecki	USA	110
USDA NRCS Soil Climate Analysis Network (SCAN)	M. Cosh	USA	155
GPS	E. Small	Western USA	123
COSMOS	M. Zreda	Mostly USA	53
SMOSMania	J. Calvet	Southern France	21
Pampas	M. Thibeault	Argentina	20
Oklahoma Mesonet	-	Oklahoma, USA	140
MAHASRI	J. Asanuma	Mongolia	13

in situ data from sparse networks

			ubRMSD	(m ³ /m ³))		Bias (I	m³/m³)			RMSD ((m ³ /m ³)	1		R			
	IGBP Class	SCA-H	SCA-V	DCA	SMOS	SCA-H	SCA-V	DCA	SMOS	SCA-H	SCA-V	DCA	SMOS	SCA-H	SCA-V	DCA	SMOS	N
	ENF	0.040	0.039	0.052	0.062	-0.033	0.033	0.166	-0.127	0.052	0.051	0.174	0.141	0.498	0.530	0.515	0.430	1
	MXF	0.059	0.060	0.068	0.055	-0.037	-0.003	0.045	-0.054	0.070	0.060	0.081	0.077	0.609	0.591	0.541	0.752	1
	OSH	0.038	0.039	0.050	0.056	-0.041	-0.008	0.032	-0.010	0.063	0.055	0.075	0.068	0.516	0.523	0.513	0.460	38
	WSV	0.054	0.049	0.061	0.081	-0.017	0.021	0.078	-0.063	0.088	0.080	0.112	0.134	0.709	0.717	0.596	0.541	16
	SAV	0.032	0.032	0.040	0.044	-0.043	-0.026	-0.016	-0.031	0.063	0.055	0.056	0.059	0.877	0.875	0.869	0.866	3
6:00 AM	GRS	0.051	0.051	0.059	0.062	-0.076	-0.042	0.003	-0.049	0.098	0.079	0.080	0.091	0.667	0.675	0.637	0.596	224
	CRP	0.077	0.066	0.071	0.078	-0.047	-0.033	-0.009	-0.050	0.117	0.101	0.097	0.117	0.569	0.602	0.541	0.553	54
	MOS	0.063	0.056	0.066	0.079	-0.044	-0.015	0.033	-0.124	0.095	0.084	0.101	0.176	0.722	0.761	0.643	0.536	20
	BAR	0.018	0.021	0.030	0.032	-0.015	0.006	0.035	0.002	0.034	0.033	0.051	0.040	0.648	0.596	0.522	0.620	6
	L2_SM_P_E SMAP average	0.054	0.051	0.060	0.065	-0.062	-0.032	0.010	-0.049	0.095	0.079	0.084	0.098	0.642	0.654	0.608	0.572	363
	L2_SM_P SMAP average	0.053	0.050	0.057	0.066	-0.061	-0.031	0.010	-0.049	0.093	0.077	0.081	0.099	0.643	0.663	0.633	0.576	393
		A	verage i	s based	upon a	II sets of	observa	ations, n	ot the av	verage o	of the la	nd cov	er cate	gory res	ults.			
		l	ubRMSD	(m ³ /m ³))		Bias (I	n³/m³)			RMSD ((m³/m³)			R			
	IGBP Class	SCA-H	ubRMSD SCA-V	(m ³ /m ³) DCA	SMOS	SCA-H	Bias (I SCA-V	m ³ /m ³) DCA	SMOS	SCA-H	RMSD SCA-V	(<mark>m³/m³</mark>) DCA	SMOS	SCA-H	R SCA-V	DCA	SMOS	N
	IGBP Class ENF	SCA-H 0.047	ubRMSD SCA-V 0.046	(m ³ /m ³) DCA 0.067	SMOS 0.050	SCA-H	Bias (1 SCA-V 0.006	n ³ /m ³) DCA 0.115	SMOS -0.095	SCA-H 0.074	RMSD SCA-V 0.047	(m ³ /m ³) DCA 0.133	SMOS 0.107	SCA-H 0.442	R SCA-V 0.461	DCA 0.429	SMOS 0.585	N 1
	IGBP Class ENF MXF	SCA-H 0.047 0.057	SCA-V 0.046 0.053	(m ³ /m ³) DCA 0.067 0.051	SMOS 0.050 0.056	SCA-H -0.057 -0.040	Bias (1 SCA-V 0.006 -0.011	m ³ /m ³) DCA 0.115 0.029	SMOS -0.095 -0.047	SCA-H 0.074 0.070	RMSD (SCA-V 0.047 0.054	(m ³ /m ³) DCA 0.133 0.059	SMOS 0.107 0.073	SCA-H 0.442 0.687	R SCA-V 0.461 0.740	DCA 0.429 0.771	SMOS 0.585 0.753	N 1 1
	IGBP Class ENF MXF OSH	SCA-H 0.047 0.057 0.040	bRMSD SCA-V 0.046 0.053 0.042	(m ³ /m ³) DCA 0.067 0.051 0.053	SMOS 0.050 0.056 0.057	SCA-H -0.057 -0.040 -0.051	Bias (1 SCA-V 0.006 -0.011 -0.022	m ³ /m ³) DCA 0.115 0.029 0.009	SMOS -0.095 -0.047 -0.005	SCA-H 0.074 0.070 0.070	RMSD (SCA-V 0.047 0.054 0.058	(m ³ /m ³) DCA 0.133 0.059 0.067	SMOS 0.107 0.073 0.071	SCA-H 0.442 0.687 0.485	R SCA-V 0.461 0.740 0.468	DCA 0.429 0.771 0.441	SMOS 0.585 0.753 0.421	N 1 1 39
	IGBP Class ENF MXF OSH WSV	SCA-H 0.047 0.057 0.040 0.051	SCA-V 0.046 0.053 0.042 0.047	(m ³ /m ³) DCA 0.067 0.051 0.053 0.058	SMOS 0.050 0.056 0.057 0.080	SCA-H -0.057 -0.040 -0.051 -0.012	Bias (1 SCA-V 0.006 -0.011 -0.022 0.015	m ³ /m ³) DCA 0.115 0.029 0.009 0.053	SMOS -0.095 -0.047 -0.005 -0.045	SCA-H 0.074 0.070 0.070 0.086	RMSD (SCA-V 0.047 0.054 0.058 0.079	(m ³ /m ³) DCA 0.133 0.059 0.067 0.098	SMOS 0.107 0.073 0.071 0.114	SCA-H 0.442 0.687 0.485 0.745	R SCA-V 0.461 0.740 0.468 0.750	DCA 0.429 0.771 0.441 0.625	SMOS 0.585 0.753 0.421 0.584	N 1 1 39 16
	IGBP Class ENF MXF OSH WSV SAV	SCA-H 0.047 0.057 0.040 0.051 0.033	UbRMSD SCA-V 0.046 0.053 0.042 0.047 0.035	(m ³ /m ³) DCA 0.067 0.051 0.053 0.058 0.040	SMOS 0.050 0.056 0.057 0.080 0.047	SCA-H -0.057 -0.040 -0.051 -0.012 -0.043	Bias (1 SCA-V 0.006 -0.011 -0.022 0.015 -0.034	n ³ /m ³) DCA 0.115 0.029 0.009 0.053 -0.029	SMOS -0.095 -0.047 -0.005 -0.045 -0.023	SCA-H 0.074 0.070 0.086 0.063	RMSD (SCA-V 0.047 0.054 0.058 0.079 0.058	(m ³ /m ³) DCA 0.133 0.059 0.067 0.098 0.058	SMOS 0.107 0.073 0.071 0.114 0.073	SCA-H 0.442 0.687 0.485 0.745 0.890	R SCA-V 0.461 0.740 0.468 0.750 0.871	DCA 0.429 0.771 0.441 0.625 0.861	SMOS 0.585 0.753 0.421 0.584 0.841	N 1 39 16 3
6:00 PM	IGBP Class ENF MXF OSH WSV SAV GRS	SCA-H 0.047 0.057 0.040 0.051 0.033 0.051	UbRMSD SCA-V 0.046 0.053 0.042 0.047 0.035 0.051	(m ³ /m ³) DCA 0.067 0.051 0.053 0.058 0.040 0.059	SMOS 0.050 0.056 0.057 0.080 0.047 0.062	SCA-H -0.057 -0.040 -0.051 -0.012 -0.043 -0.079	Bias (1 SCA-V 0.006 -0.011 -0.022 0.015 -0.034 -0.053	n ³ /m ³) DCA 0.115 0.029 0.009 0.053 -0.029 -0.020	SMOS -0.095 -0.047 -0.005 -0.045 -0.023 -0.043	SCA-H 0.074 0.070 0.070 0.086 0.063 0.101	RMSD (SCA-V 0.047 0.054 0.058 0.079 0.058 0.085	(m ³ /m ³) DCA 0.133 0.059 0.067 0.098 0.058 0.058	SMOS 0.107 0.073 0.071 0.114 0.073 0.088	SCA-H 0.442 0.687 0.485 0.745 0.890 0.663	R SCA-V 0.461 0.740 0.468 0.750 0.871 0.667	DCA 0.429 0.771 0.441 0.625 0.861 0.632	SMOS 0.585 0.753 0.421 0.584 0.841 0.609	N 1 39 16 3 224
6:00 PM	IGBP Class ENF MXF OSH WSV SAV GRS CRP	SCA-H 0.047 0.057 0.040 0.051 0.033 0.051 0.075	UbRMSD SCA-V 0.046 0.053 0.042 0.047 0.035 0.051 0.065	(m ³ /m ³) DCA 0.067 0.051 0.053 0.058 0.040 0.059 0.070	SMOS 0.050 0.056 0.057 0.080 0.047 0.062 0.076	SCA-H -0.057 -0.040 -0.051 -0.012 -0.043 -0.079 -0.037	Bias (1 SCA-V 0.006 -0.011 -0.022 0.015 -0.034 -0.053 -0.037	n ³ /m ³) DCA 0.115 0.029 0.009 0.053 -0.029 -0.020 -0.030	SMOS -0.095 -0.047 -0.005 -0.045 -0.023 -0.043 -0.047	SCA-H 0.074 0.070 0.070 0.086 0.063 0.101 0.117	RMSD (SCA-V 0.047 0.054 0.058 0.079 0.058 0.085 0.103	(m ³ /m ³) DCA 0.133 0.059 0.067 0.098 0.058 0.082 0.100	SMOS 0.107 0.073 0.071 0.114 0.073 0.088 0.111	SCA-H 0.442 0.687 0.485 0.745 0.890 0.663 0.579	R SCA-V 0.461 0.740 0.468 0.750 0.871 0.667 0.610	DCA 0.429 0.771 0.441 0.625 0.861 0.632 0.560	SMOS 0.585 0.753 0.421 0.584 0.841 0.609 0.547	N 1 39 16 3 224 54
6:00 PM	IGBP Class ENF MXF OSH WSV SAV GRS CRP MOS	SCA-H 0.047 0.057 0.040 0.051 0.033 0.051 0.075 0.061	UbRMSD SCA-V 0.046 0.053 0.042 0.047 0.035 0.051 0.065 0.055	(m ³ /m ³) DCA 0.067 0.051 0.053 0.058 0.040 0.059 0.070 0.065	SMOS 0.050 0.056 0.057 0.080 0.047 0.062 0.076 0.079	SCA-H -0.057 -0.040 -0.051 -0.012 -0.043 -0.079 -0.037 -0.033	Bias (1 SCA-V 0.006 -0.011 -0.022 0.015 -0.034 -0.053 -0.037 -0.017	n ³ /m ³) DCA 0.115 0.029 0.009 0.053 -0.029 -0.020 -0.020 -0.030 0.009	SMOS -0.095 -0.047 -0.005 -0.045 -0.023 -0.043 -0.047 -0.112	SCA-H 0.074 0.070 0.086 0.063 0.101 0.117 0.089	RMSD SCA-V 0.047 0.054 0.058 0.079 0.058 0.085 0.103 0.083	(m ³ /m ³) DCA 0.133 0.059 0.067 0.098 0.058 0.082 0.100 0.093	SMOS 0.107 0.073 0.071 0.114 0.073 0.088 0.111 0.160	SCA-H 0.442 0.687 0.485 0.745 0.890 0.663 0.579 0.723	R SCA-V 0.461 0.740 0.468 0.750 0.871 0.667 0.610 0.761	DCA 0.429 0.771 0.441 0.625 0.861 0.632 0.560 0.659	SMOS 0.585 0.753 0.421 0.584 0.841 0.609 0.547 0.544	N 1 39 16 3 224 54 20
6:00 PM	IGBP Class ENF MXF OSH WSV SAV GRS GRS CRP MOS BAR	SCA-H 0.047 0.057 0.040 0.051 0.033 0.051 0.075 0.061 0.019	UbRMSD SCA-V 0.046 0.053 0.042 0.047 0.035 0.051 0.065 0.055 0.022	(m ³ /m ³) DCA 0.067 0.051 0.053 0.058 0.040 0.059 0.070 0.065 0.031	SMOS 0.050 0.056 0.057 0.080 0.047 0.062 0.076 0.079 0.036	SCA-H -0.057 -0.040 -0.051 -0.012 -0.043 -0.079 -0.037 -0.033 -0.022	Bias (1 SCA-V 0.006 -0.011 -0.022 0.015 -0.034 -0.053 -0.037 -0.017 -0.005	n ³ /m ³) DCA 0.115 0.029 0.009 0.053 -0.029 -0.020 -0.020 0.009 0.018	SMOS -0.095 -0.047 -0.005 -0.045 -0.023 -0.043 -0.043 -0.047 -0.112 0.004	SCA-H 0.074 0.070 0.086 0.063 0.101 0.117 0.089 0.038	RMSD SCA-V 0.047 0.054 0.058 0.079 0.058 0.085 0.103 0.083	(m ³ /m ³) DCA 0.133 0.059 0.067 0.098 0.058 0.082 0.100 0.093 0.045	SMOS 0.107 0.073 0.071 0.114 0.073 0.088 0.111 0.160 0.045	SCA-H 0.442 0.687 0.485 0.745 0.890 0.663 0.579 0.723 0.577	R SCA-V 0.461 0.740 0.468 0.750 0.871 0.667 0.610 0.761 0.516	DCA 0.429 0.771 0.441 0.625 0.861 0.632 0.560 0.659 0.443	SMOS 0.585 0.753 0.421 0.584 0.841 0.609 0.547 0.544 0.453	N 1 39 16 3 224 54 20 6
6:00 PM	IGBP Class ENF MXF OSH WSV SAV GRS CRP MOS BAR L2_SM_P_E SMAP average	SCA-H 0.047 0.057 0.040 0.051 0.051 0.051 0.051 0.051 0.051 0.0551 0.0551 0.0551 0.0551 0.0551 0.0551	ubRMSD SCA-V 0.046 0.053 0.042 0.047 0.035 0.051 0.065 0.055 0.022 0.051	(m ³ /m ³) DCA 0.067 0.051 0.053 0.058 0.040 0.059 0.070 0.065 0.031 0.059	SMOS 0.050 0.057 0.080 0.047 0.062 0.076 0.079 0.036 0.065	SCA-H -0.057 -0.040 -0.051 -0.012 -0.043 -0.079 -0.037 -0.033 -0.022 -0.063	Bias (1 SCA-V 0.006 -0.011 -0.022 0.015 -0.034 -0.053 -0.037 -0.017 -0.005 -0.041	n ³ /m ³) DCA 0.115 0.029 0.009 0.053 -0.029 -0.020 -0.030 0.009 0.018 -0.012	SMOS -0.095 -0.047 -0.005 -0.045 -0.023 -0.043 -0.047 -0.112 0.004 -0.043	SCA-H 0.074 0.070 0.086 0.063 0.101 0.117 0.089 0.038 0.097	RMSD SCA-V 0.047 0.054 0.058 0.079 0.058 0.085 0.103 0.083 0.035	(m ³ /m ³) DCA 0.133 0.059 0.067 0.098 0.058 0.082 0.100 0.093 0.045 0.084	SMOS 0.107 0.073 0.071 0.114 0.073 0.088 0.111 0.160 0.045 0.094	SCA-H 0.442 0.687 0.485 0.745 0.663 0.5779 0.5777 0.639	R SCA-V 0.461 0.740 0.468 0.750 0.871 0.667 0.610 0.761 0.516 0.645	DCA 0.429 0.771 0.441 0.625 0.861 0.632 0.560 0.659 0.443 0.601	SMOS 0.585 0.753 0.421 0.584 0.841 0.609 0.547 0.544 0.453 0.575	N 1 39 16 3 224 54 20 6 364
6:00 PM	IGBP Class ENF MXF OSH WSV SAV GRS CRP MOS BAR L2_SM_P_E SMAP average L2_SM_P SMAP average	SCA-H 0.047 0.057 0.040 0.051 0.033 0.051 0.040 0.051 0.051 0.053 0.053	UbRMSD SCA-V 0.046 0.053 0.042 0.047 0.035 0.051 0.055 0.022 0.051 0.051	(m ³ /m ³) DCA 0.067 0.051 0.053 0.058 0.040 0.059 0.070 0.065 0.031 0.059	SMOS 0.050 0.057 0.080 0.047 0.062 0.076 0.079 0.036 0.065 0.065	SCA-H -0.057 -0.040 -0.051 -0.012 -0.043 -0.079 -0.033 -0.022 -0.063 -0.063	Bias (1 SCA-V 0.006 -0.011 -0.022 0.015 -0.034 -0.053 -0.037 -0.017 -0.005 -0.041 -0.043	n ³ /m ³) DCA 0.115 0.029 0.009 0.053 -0.029 -0.020 -0.030 0.009 0.018 -0.012 -0.016	SMOS -0.095 -0.047 -0.005 -0.045 -0.023 -0.043 -0.047 -0.112 0.004 -0.043 -0.043	SCA-H 0.074 0.070 0.086 0.063 0.101 0.117 0.089 0.038 0.097	RMSD SCA-V 0.047 0.058 0.079 0.058 0.083 0.035 0.035 0.035 0.033 0.083	(m ³ /m ³) DCA 0.133 0.059 0.067 0.098 0.058 0.082 0.100 0.093 0.045 0.084	SMOS 0.107 0.071 0.114 0.073 0.114 0.073 0.088 0.111 0.160 0.045 0.094 0.095	SCA-H 0.442 0.687 0.745 0.745 0.663 0.579 0.723 0.5777 0.639 0.618	R SCA-V 0.461 0.740 0.468 0.750 0.871 0.667 0.610 0.761 0.516 0.645 0.629	DCA 0.429 0.771 0.441 0.625 0.861 0.632 0.560 0.659 0.443 0.601	SMOS 0.585 0.753 0.421 0.584 0.841 0.609 0.544 0.453 0.575 0.578	N 1 1 39 16 3 224 54 20 6 364 394

- Enhanced L2_SM_P_E shows decent ubRMSD and correlation over sparse networks
- Same trends of relative merits among algorithm options as indicated in CVS analysis

Conclusion

• Enhanced L2_SM_P_E:

- Uses L1C_TB_E on 9 km as input
- Provides diurnal monitoring ability with AM and PM data
- Uses identical ancillary data and inversion algorithm as standard L2_SM_P
- Reveals enhanced visual features otherwise concealed due to blockiness in standard L2_SM_P

Assessment using *in situ* data indicates:

- Standard product attains an ubRMSE of 0.037 m³/m³ (AM being the best case)
- Enhanced product attains an ubRMSE of 0.038 m³/m³ (AM being the best case)
- AM retrieval slightly more accurate than PM retrieval
- SCA-V delivers more accurate retrieval than other option algorithms

Stable cumulative retrieval performance:

- ubRMSE has been staying near or below 0.040 m³/m³

Backup

SMAP Canada Workshop • Ontario, Canada • May 16-17, 2017

Product assessment publications (published and under-review):

On enhanced product (SPL2SMP_E)

Chan, S., R. Bindlish, P. O'Neill, T. Jackson, E. Njoku, S. Dunbar, J. Chaubell, J. Piepmeier, S. Yueh, D. Entekhabi, A. Colliander, F. Chen, M. H. Cosh, T. Caldwell, J. Walker, A. Berg, H. McNairn, M. Thibeault, J. Martínez-Fernández, F. Uldall, M. Seyfried, D. Bosch, P. Starks, C. Holifield Collins, J. Prueger, R. van der Velde, J. Asanuma, M. Palecki, E. E. Small, M. Zreda, J. Calvet, W. T. Crow, and Y. Kerr (2017): Development and Assessment of the SMAP Enhanced Passive Soil Moisture Product, *Remote Sensing of Environment*, under review.

On standard product (SPL2SMP)

Chan, S., R. Bindlish, P. O'Neill, E. Njoku, T. Jackson, A. Colliander, F. Chen, M. Mariko, S. Dunbar, J. Piepmeier, S. Yueh, D. Entekhabi, M. Cosh, T. Caldwell, J. Walker, X. Wu, A. Berg, T. Rowlandson, A. Pacheco, H. McNairn, M. Thibeault, J. Martinez-Fernandez, A. Gonzalez-Zamora, M. Seyfried, D. Bosch, P. Starks, D. Goodrich, J. Prueger, M. Palecki, E. Small, M. Zreda, J. Calvet, W. Crow, Y. Kerr (2016): Assessment of the SMAP Passive Soil Moisture Product, *IEEE Transactions on Geoscience and Remote Sensing*, 54(8), pp. 4994–5007.

On enhanced and standard products (SPL2SMP_E and SPL2SMP)

Jackson, T., P. O'Neill, E. Njoku, S, Chan, R. Bindlish, A. Colliander, F. Chen, M. Burgin, S. Dunbar, J. Piepmeier, M. Cosh, T. Caldwell, J. Walker, X. Wu, A. Berg, T. Rowlandson, A. Pacheco, H. McNairn, M. Thibeault, J. Martínez-Fernández, Á. González-Zamora, M. Seyfried, D. Bosch, P. Starks, D. Goodrich, J. Prueger, Z. Su, R. van der Velde, J. Asanuma, M. Palecki, E. Small, M. Zreda, J. Calvet, W. Crow, Y. Kerr, S. Yueh, and D. Entekhabi (2016): Calibration and Validation for the L2/3_SM_P Version 4 and L2/3_SM_P_E Version 1 Data Products, [Online]. Available: https://nsidc.org/data/smap/data_version