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Outline

« Soil Moisture
« Activities at the Kenaston validation
site
« SMAP product evaluation over an arctic
tundra region

 Soil Freeze Thaw
 Ground-based networks
* A soil-freeze thaw validation campaign
for SMAP
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Soil Moisture Networks in Canada
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Kenaston SMAP Core Validation Site: Saskatchewan
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Kenaston SK Network : Overview
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3 depths/orientation

*0-5 cm vertical (EC), 5 cm
horizontal (EC and U of G)
«20 cm horizontal

*50 cm horizontal

Stevens Hydra Probe Il

EC 24 sites | R ~ Site specific calibration
U Of G 15 Sltes ' Soil moisture

Temporal Frequency: half- = e o

hourly e

Variables Observed:

» Soil temperature

» Soil Moisture

* Precipitation

« 2 M air temp/humidity

Latency: NRT
Instrumented for Freeze/Thaw
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Kenaston Site Upscaling Strategies
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Upscaling procedures are necessary to ensure that the
measurements from the individual network locations are
representative of the soil moisture within the larger SMAP pixel.

Several different upscaling strategies have been described including
arithmetic average (AA), inverse distance weighting (IDW), Kriging
(K), Voronoi diagrams (VD), temporal stability (TS) and soil weighted
averages (SWA).

Here we evaluate differences from the use different upscaling
techniques to generate a representative footprint scale soil moisture
average for the validation of the SMAP products.

We also evaluate the sensitivity of strategies to station loss

) -Geog.-'mm Woodley et al. in Prep.
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Variation among upscaling strategies: Methods
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«  Six upscaling techniques were examined: Arithmetic Average (AA),
Inverse Distance Weighting, Kriging, Voronoi diagrams, and Soll

Weighted Average

* Impacts of station drop out were assessed by randomly eliminating
stations from the upscaling method, with the simulated network
ranging from 30 stations to 5 sampling from all possible random
combinations to a maximum of 10,000 combinations
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Variation among upscaling strategies: Results
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Variation among upscaling strategies: Results
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Fig. 3: As the network CV increases Relationship between the network CV
(which occurs at lower soil moisture and the SMAP soil moisture bias
conditions), the CV of the methods
also increases. Knowledge of the network CV could

provide insight into time periods when
the network should be used with caution
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= Trail Valley Creek
Watershed
= Continuous permafrost e
= Open tundra, North of ‘ LR
Boreal tree line weafe aN -
Gentle topography

Grasses, lichens,
mosses
Hummocky terrain

= Mineral earth hummocks
= Thin organic layer
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Trail Valle
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= Numerous
methods of In situ
soll moisture .
estimation do not
show relationship
with SMAP
products ?

- GicoaraPHY
juveniry or o Wrona et al. 2017 GRL
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Figure 17 Correlation between SMAP-derived soil moisture product and all
ground-derived estimates of soil moisture.
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SMAP products are processed
and provided on global EASE
2.0 grids that may not be
representative of the
brightness temperature
observation

Using a forward modelling
approach (the Community
Microwave Emission Model

: (CMEM)) with observed soll
3 (t/l./ moisture and site parameters
e modeled microwave
— )
an 220 R? = 0.3004 brightness values vs.
<§E observed brightness
h temperatures show significant

_ G - S § % relationship
SAEOGRAPHY

CMEM Tb (K)



Improvement of soll
moisture retrievals based on
detalled L-Band microwave
study of soil moisture at
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Importance of Soil Freeze State

Model validation
4 - e CA3 Model fit

= N,O is a potent greenhouse

gas (~300x CO.,) S

= Spring N,O flux is associated
with the soll freeze cycle and

Cumulative N,O emissions (kg N ha)

EXte nt Of freeZ|ng OCumuIa?i?/Oe freezlitgg degreesgf)days (EO(())OC)
= Current global estimates only

consider warm season vy
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Wagner-Riddle et al. 2017 Nature Geoscience 10, 279-283 (2017)  ~  ow
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=  QOur analysis shows that
seasonally frozen cropland
contributes an average
1.07+0.29 Tg N,O-N annually to
the global anthropogenic N,O
budget. This translates to a 23-
39% underestimate of total
global agricultural N,O
emissions

= There is significant variation in
the global estimate based on
the freeze-thaw representation
in global reanalysis products
(and their associated land
surface models)

- 'GEO#RAPHY

mportance of Soil Freeze State
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Validation of the Soil Freeze Thaw State: Context
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We are attempting to evaluate
and improve the observation
of the soll freeze thaw state
from SMAP (in Collaboration
with Derksen, Toose, Roy,
Royer)

Using ground-based
radiometer what the optimal

o I

l‘ —~ 1 |
—_

ground-based sensing depths - : -f‘r— Be
and measurement types for ey =
validation efforts? L-band radiometer observing soil freeze

thaw state near Saskatoon, Saskatchewan

Williamson et al. in prep; Williamson et al. 2017; Roy et al. 2017
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Validation of the Soil Freeze Thaw State: Results

Correspondence among ground-based

{ soll freeze thaw indicator and L-Band
3 /\W | radiometer estimate (using the seasonal
g | threshold algorithm)
3 w _h N
7 T e e | Air Temperature (top panel) good proxy
% Mﬁw under dry snow conditions, however very
m » .+25m+5m+mm: poor under wet or bare soil.
> ;)_9 1 Under Bare soil conditions, soil dielectric
O el — v —ren o o 1 measurements (near but not at surface)
2 o onve==]  correspond most closel
5 @ o P Y
3L e Under dry snow conditions, soil
> tiv f %WW temperature measurements near surface
(% 1 [ B correspond most closely
S Wm A ¥ Wj Under wet snow both soil temperature or
TS T e e o | soil dielectric are similar, both greatly

!
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

exceed air temperature proxy
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" Soil Freeze Thaw SMAP Experiment
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= QOctober 28-November 11, 2015 we _
conducted a freeze thaw SMAP A
experiment near Carmen, Manitoba  { "

= Morning and afternoon flights of
NASA'’s King-Air aircraft carrying

their Scanning L-band active [§ N
passive sensor (SLAP) - GSE
= Ground crews observing — )
freeze/thaw state (temperature), soil L &
freezing state and soil moisture = = =

~Gieocraphy
9 ]
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Detection of Soil Freeze State

@ Air Temp

A Surface Thermistors
O Soil Pit (Hydra Probes)

+ 130 cm Temp Profiler
B Logger Box

<:§} Infrared Surface Temperature
$3  Thermistor String

ARV AT
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~_Detection of Soil Freeze State
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= Preliminary results demonstrate several full or partial
freeze thaw events

= The ground radiometers show high-sensitivity to diurnal
F/T events for near surface freezing

= SMAP responds to both partial and full freeze events

) 'G#O#RAPHY
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Final Notes
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 Poor correlation with ground observations may be related to
scaling of validation estimates, at time of high variance the
uncertainty of the upscaled estimate is low

 Use of SMAP products at high latitude is cautioned however
retrieval on polar grid should be attempted

« Soll freeze validation should not be conducted using air
temperature if bare soils or wet snow is likely

«  SMAP shows high sensitivity to soil freeze conditions under both
partial and total freeze of the pixel
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