Calibration/Validation Activities for SMAP Over Several Sites in Canada

Aaron Berg¹, Tracy Rowlandson¹, Elizabeth Wrona¹, William Woodley¹, Manoj Nambiar¹, Matt Williamson, Erica Tetlock²

¹Department of Geography, University of Guelph, Guelph, ON, Canada
²National Hydrology Research Center, Environment Canada, Saskatoon, SK
Outline

• **Soil Moisture**
 • Activities at the Kenaston validation site
 • SMAP product evaluation over an arctic tundra region

• **Soil Freeze Thaw**
 • Ground-based networks
 • A soil-freeze thaw validation campaign for SMAP
Soil Moisture Networks in Canada

Trail Valley Creek

Ontario
Manitoba
Saskatchewan
Alberta
Kenaston SMAP Core Validation Site: Saskatchewan

<table>
<thead>
<tr>
<th>Product</th>
<th>Grids with 5 or more sites</th>
</tr>
</thead>
<tbody>
<tr>
<td>3km Radar SM/FT</td>
<td>2</td>
</tr>
<tr>
<td>9km (Radar+Radiometer)</td>
<td>4</td>
</tr>
<tr>
<td>36km (Radiometer)</td>
<td>2</td>
</tr>
</tbody>
</table>
Kenaston SK Network: Overview

3 depths/orientation
- 0-5 cm vertical (EC), 5 cm horizontal (EC and U of G)
- 20 cm horizontal
- 50 cm horizontal

Stevens Hydra Probe II
Site specific calibration

EC 24 sites
U of G 15 sites
Temporal Frequency: half-hourly

Variables Observed:
- Soil temperature
- Soil Moisture
- Precipitation
- 2 M air temp/humidity

Latency: NRT

Instrumented for Freeze/Thaw
Upscaling procedures are necessary to ensure that the measurements from the individual network locations are representative of the soil moisture within the larger SMAP pixel.

Several different upscaling strategies have been described including arithmetic average (AA), inverse distance weighting (IDW), Kriging (K), Voronoi diagrams (VD), temporal stability (TS) and soil weighted averages (SWA).

Here we evaluate differences from the use of different upscaling techniques to generate a representative footprint scale soil moisture average for the validation of the SMAP products.

We also evaluate the sensitivity of strategies to station loss.
Variation among upscaling strategies: Methods

- Six upscaling techniques were examined: Arithmetic Average (AA), Inverse Distance Weighting, Kriging, Voronoi diagrams, and Soil Weighted Average.

- Impacts of station drop out were assessed by randomly eliminating stations from the upscaling method, with the simulated network ranging from 30 stations to 5 sampling from all possible random combinations to a maximum of 10,000 combinations.
Time series of the upscaling methods and the SMAP soil moisture retrievals with precipitation events.

Relative bias of individual methods versus an average of all five of the methods (proxy data set). Note the decreasing bias as the average soil moisture increases.
Fig. 3: As the network CV increases (which occurs at lower soil moisture conditions), the CV of the methods also increases.

Relationship between the network CV and the SMAP soil moisture bias

Knowledge of the network CV could provide insight into time periods when the network should be used with caution for cal/val activities.
The range in upscaled soil moisture across all possible random combinations of stations from 5 to 30. Soil weighting and Voronoi diagrams show less stability.
Trail Valley Creek Watershed

- Continuous permafrost
- Open tundra, North of Boreal tree line
- Gentle topography
- Grasses, lichens, mosses
- Hummocky terrain
 - Mineral earth hummocks
 - Thin organic layer
Numerous methods of in situ soil moisture estimation do not show relationship with SMAP products.

Figure 17 Correlation between SMAP-derived soil moisture product and all ground-derived estimates of soil moisture.

Wrona et al. 2017 GRL
SMAP products are processed and provided on global EASE 2.0 grids that may not be representative of the brightness temperature observation.

Using a forward modelling approach (the Community Microwave Emission Model (CMEM)) with observed soil moisture and site parameters modeled microwave brightness values vs. observed brightness temperatures show significant relationship.
Further TVC Activities

Improvement of soil moisture retrievals based on detailed L-Band microwave study of soil moisture at TVC
- N_2O is a potent greenhouse gas (~300x CO$_2$)

- Spring N_2O flux is associated with the soil freeze cycle and extent of freezing

- Current global estimates only consider warm season

Our analysis shows that seasonally frozen cropland contributes an average 1.07 ± 0.29 Tg N$_2$O-N annually to the global anthropogenic N$_2$O budget. This translates to a 23-39% underestimate of total global agricultural N$_2$O emissions.

There is significant variation in the global estimate based on the freeze-thaw representation in global reanalysis products (and their associated land surface models).

Wagner-Riddle et al. 2017
We are attempting to evaluate and improve the observation of the soil freeze thaw state from SMAP (in Collaboration with Derksen, Toose, Roy, Royer).

Using ground-based radiometer what the optimal ground-based sensing depths and measurement types for validation efforts?
Validation of the Soil Freeze Thaw State: Results

Correspondence among ground-based soil freeze thaw indicator and L-Band radiometer estimate (using the seasonal threshold algorithm)

Air Temperature (top panel) good proxy under dry snow conditions, however very poor under wet or bare soil.

Under Bare soil conditions, soil dielectric measurements (near but not at surface) correspond most closely

Under dry snow conditions, soil temperature measurements near surface correspond most closely

Under wet snow both soil temperature or soil dielectric are similar, both greatly exceed air temperature proxy
Soil Freeze Thaw SMAP Experiment

- October 28-November 11, 2015 we conducted a freeze thaw SMAP experiment near Carmen, Manitoba
- Morning and afternoon flights of NASA’s King-Air aircraft carrying their Scanning L-band active passive sensor (SLAP)
- Ground crews observing freeze/thaw state (temperature), soil freezing state and soil moisture
Detection of Soil Freeze State
Preliminary results demonstrate several full or partial freeze thaw events

- The ground radiometers show high-sensitivity to diurnal F/T events for near surface freezing
- SMAP responds to both partial and full freeze events
Final Notes

• Poor correlation with ground observations may be related to scaling of validation estimates, at time of high variance the uncertainty of the upscaled estimate is low

• Use of SMAP products at high latitude is cautioned however retrieval on polar grid should be attempted

• Soil freeze validation should not be conducted using air temperature if bare soils or wet snow is likely

• SMAP shows high sensitivity to soil freeze conditions under both partial and total freeze of the pixel
Acknowledgments

Andreas Colliander and NASA SMAP Science Team
Alexandre Roy, Alain Royer, Chris Derksen, Peter Toose
SLAPEX2015 team: Jarrett Powers and AAFC team, Paul Houser, Ed Kim, Kyle Macdonald
Soil Freeze Thaw: Jaison Thomas-Abadan, Claudia Wagner Riddle, Kate Congreaves

Funding Support

- Canadian Space Agency
- Environment Canada
- Canadian Foundation for Innovation
- Ontario Innovation Trust
- National Science and Engineering Council of Canada (Discovery and Changing Cold Regions Network)