



## **Outline**



- Motivation
- Overview of the applied theory for L1B\_TB product and L1B\_TB\_E
- Simulated examples and results
- Application to real data and results
- Preliminary SM examples
- Future work



## Motivation



- SMAP radiometer footprints over land can cover water from open water bodies or near coastlines
- Emission by water integrated along with emission by land, leading to underestimated TB
- Underestimated TB leads to wet bias in soil moisture retrieval





# Water Contamination Correction Implementation



p = v or h

– If footprint is on land we apply the formula:

$$TB_p^{land} = \frac{TB_p - f * \overline{TB}_p^{water}}{1 - f}$$

– If footprint is on water we apply the formula:

$$TB_p^{water} = \frac{TB_p - (1 - f) * \overline{TB}_p^{land}}{f}$$

where f is the water fraction. f=1 in pure water and f=0 for pure land.

$$f = \int G.Md\Omega = \int_{\theta=[0,\pi],\psi=[0,2\pi]} G(\theta,\psi) M(\theta,\psi) \sin\theta \ d\theta d\psi$$

$$\cong \int_{\theta=[0,10*\pi/180],\psi=[0,2\pi]} G(\theta,\psi) M \sin\theta \ d\theta d\psi$$



# Implementation (continuation)



- M is the land mask defined over 1Km EASE2 grid.
- $\overline{TB}_p^{water}$  is the TB at boresight over water computed from ocean TB model using ancillary files.
- $\overline{TB}_p^{land}$  is the TB at boresight over land computed from land TB model using ancillary files.



# L1B\_TB\_E Implementation



p = v or h

– If grid point is on land we apply the formula:

$$TB_p^{land} = \frac{TB_p - f * \overline{TB}_p^{water}}{1 - f} -$$

– If grid point is on water we apply the formula:

$$TB_p^{water} = \frac{TB_p - (1 - f) * \overline{TB}_p^{land}}{f}$$

where f is the water fraction. f=1 in pure water and f=0 for pure land.

$$f = \sum_{i=1}^{6} a_i f_i$$
 where  $a_i$  are the Backus Gilbert coefficients.







$$f_{i} = \int G.Md\Omega = \int_{\theta=[0,\pi],\psi=[0,2\pi]} G(\theta,\psi) M(\theta,\psi) \sin\theta \ d\theta d\psi$$

$$\cong \int_{\theta=[0,10*\pi/180],\psi=[0,2\pi]} G(\theta,\psi) M \sin\theta \ d\theta d\psi$$



### Simulation



$$TB = \int G. \, tb d\Omega = \int_{\theta = [0,\pi], \psi = [0,2\pi]} G(\theta,\psi) \, tb(\theta,\psi) \sin \theta \, d\theta d\psi \cong$$

$$\int_{\theta = [0,10*\pi/180], \psi = [0,2\pi]} G(\theta,\psi) tb(\theta,\psi) \sin \theta \, d\theta d\psi$$

- Dielectric constant (ε) over ocean is generated by using Klein and Swift model.
- Dielectric constant (ε) over land is generated by using Mironov model.

• 
$$R_{vv} = \frac{\varepsilon \cos \theta - \sqrt{\varepsilon - \sin \theta^2}}{\varepsilon \cos \theta + \sqrt{\varepsilon - \sin \theta^2}}$$

• 
$$R_{hh} = \frac{\cos \theta - \sqrt{\varepsilon - \sin \theta^2}}{\cos \theta + \sqrt{\varepsilon - \sin \theta^2}}$$

- TB over ocean is computed using model. Takes into account wind, SST, and SSS.
- TB over land is computed using plane surface model.

$$tb = (1 - |R|^2)Ts$$



# Results over Land















# **Statistics**







38

36 -95

# Results over Land





38

36 -95

-90

-85

-80

-75

-80

-85

-90



100

-75



# **Statistics**







## **Results from Product**







## Results from Product







# SM Examples



#### **Caveats – Not an exact apple-to-apple comparison:**

- Baseline passive L2\_SM\_P\_E (BP) performs water TB correction only when water fraction is below 0.05. No water TB correction is performed when water fraction is above 0.05.
- Experimental passive L2\_SM\_P\_E (XP) does not perform water TB correction. Water TB correction is done in L1B\_TB and L1B\_TB\_E and then followed by L1C\_TB\_E processing. Water TB correction is performed as long as water fraction is not 1.00, which is an ambitious (and error-prone) scheme.



### **Example 1: The Great Lakes**







#### OPS version of SMAP soil moisture between 2017-03-01 and 2017-03-01 in m3/m3



- Narrower near-saturation soil moisture bands around open water bodies (OWB) in XP intuitively more reasonable than BP.
- Harder to interpret their relative merits elsewhere in the absence of ground truth – is XP over-correcting or BP under-correcting?
- BP and XP converge wherever water fraction is zero (i.e., no water TB correction performed).



#### **Example 1: The Great Lakes**







OPS version of SMAP soil moisture between 2017-03-01 and 2017-03-01 in m3/m3



- Compare a transect (magenta line)
   near Lake Michigan between XP and
   BP.
- Transect covers a wide range of static water fraction.
- BP attempts water TB correction only when water fraction is below 0.05.
- XP attempts water TB correction as long as water fraction is not 1.00, which is an ambitious (and errorprone) correction scheme.
- BP and XP converge wherever water fraction is zero (i.e., no water TB correction performed).



### **Example 1: The Great Lakes**



Inconclusive: At water fraction above 0.05, BP does not attempt water TB correction but XP does. However, XP should result in lower soil moisture than BP but it does not.

Inconclusive: Both XP and BP perform water TB correction when water fraction is below 0.05.

Impossible to indicate which one is more accurate without *in situ* data.



Good: XP seeps less into land from OWB compared with BP.

**Good:** XP and BP converge as expected wherever water fraction is zero



#### **Example 2: Lake Victoria**



OAS version of SMAP soil moisture between 2017-03-01 and 2017-03-01 in m3/m3



OPS version of SMAP soil moisture between 2017-03-01 and 2017-03-01 in m3/m3



- Non-existent near-saturation soil moisture bands around OWB and coastlines in XP visually more pleasing than BP.
- Forest right-hand boundaries better defined in XP than in BP. Real features?
- Forest retrievals in XP and BP hard to interpret. It is likely that BP is overcorrecting TB and XP is about right.
- BP's occasional water TB overcorrection (dashed circles) addressed quite well in XP.
- BP and XP converge wherever water fraction is zero (i.e., no water TB correction performed).



#### **Example 2: Lake Victoria**



OAS version of SMAP soil moisture between 2017-03-01 and 2017-03-01 in m3/m3



OPS version of SMAP soil moisture between 2017-03-01 and 2017-03-01 in m3/m3



- Compare a transect (magenta line) across Lake Victoria between XP and BP.
- Transect covers a wide range of static water fraction.
- BP attempts water TB correction only when water fraction is below 0.05.
- XP attempts water TB correction as long as water fraction is not 1.00, which is an ambitious (and errorprone) correction scheme.
- BP and XP converge wherever water fraction is zero (i.e., no water TB correction performed).



### **Example 2: Lake Victoria**



Inconclusive: At water fraction above 0.05, BP does not attempt water TB correction but XP does. However, XP should result in lower soil moisture than

**Note:** Point on water. The code tries to correct for land contamination.



**Good:** XP seeps less into land from OWB compared with BP.

Good: XP and BP converge as expected wherever water fraction is zero

**Good:** BP's occasional water TB over-correction (dashed circles) addressed quite well in XP.





#### **Observations:**

- XP offers a few noticeable improvements over BP:
  - Seeps less into land from open water bodies (OWB) and coastlines
  - Addresses BP's occasional water TB over-correction over land (and perhaps dense forests too)
- There are also uncertain behaviors associated with XP:
  - Produces wetter soil moisture than BP even when BP is not doing any water TB correction

#### **Next Steps:**

- Improve land fraction calculation efficiency.
- Analyze cause of anomalies.
- Improve ancillary data selection.
- Include ice ancillary data and model.
- Acquire in situ data for quantitative assessment.