Assimilation of L-band Soil Moisture Brightness Temperatures (TB) into the Soil, Vegetation and Snow (SVS) Scheme within the Canadian Land Data Assimilation System (CaLDAS)

Marco L. Carrera1, Bernard Bilodeau1, Maria Abrahamowicz1, Stephane Bélair1, Albert Russell1, and Xihong Wang2

(1) Meteorological Research Division, (2) Meteorological Service of Canada

Environment and Climate Change Canada (ECCC)

8th SMAP Cal/Val Workshop June 20-22, 2017
University of Massachusetts, Amherst MA
Soil Moisture & Numerical Weather Prediction (NWP)

Soil moisture affects:

- Land surface evaporation and evapotranspiration
- Sensible and latent heat fluxes (partition of net radiation)
- Evolution and structure of the boundary layer
- Formation of clouds, precipitation (convection) and weather systems

Common approach in NWP:

- Infer soil moisture from short-range forecast errors in screen-level (2m) temperature and humidity (so-called "pseudo-analysis" of soil moisture)

Issues:

- 2m observations have highly variable spatial and temporal density
- "Tunes" soil moisture of the model to provide accurate fluxes, less focus on improving soil moisture itself

Goal at ECCC:

Improve both (1) the initialization and (2) modeling of soil moisture to improve:

1. Standard NWP variables (Air temp., humidity, precipitation)
2. Soil moisture (and related variables: runoff, drought and flood conditions etc.) (** Increasing focus on environmental prediction)
Canadian Land Data Assimilation System (CaLDAS)

- **Ensemble Kalman Filter (EnKF)** (24 members)
- **Observations** assimilated:
 - Screen-level Temp and Humidity, Snow depth, **NEW: SMAP L-band TBs**
- **Analyzed variables:**
 - Land surface temperature, snow depth, Soil Moisture (superficial, and root zone)
- **Background/First guess:**
 - Off-line land surface prediction system with 2 choices of land surface scheme:
 - **ISBA**: Interaction between Surface, Biosphere, Atmosphere
 - **SVS**: Soil Vegetation and Snow (**New at ECCC**)
 - One energy budget for land surface
 - Force-restore equation for soil moisture + 2 soil layers
 - Separate energy budget for bare ground, veg. and snow
 - Vertical soil water diffusion + 7 soil layers
 - Updated parametrizations for snow, runoff, stomatal resistance etc.

NOTE: ISBA & SVS also in full 3D GEM model (GEM: Global Environmental Multiscale)

Carrera et al., 2015: The Canadian Land Data Assimilation System (CaLDAS): Description and Synthetic Evaluation Study
Alavi et al., 2016: Warm Season Evaluation of Soil Moisture Prediction in the Soil, Vegetation, and Snow (SVS) Scheme
Husain et al., 2016: The Multibudget Soil, Vegetation, and Snow (SVS) Scheme for Land Surface Parameterization: Offline Warm Season Evaluation
CaLDAS and SMAP:

Goal:
Evaluate the impact of assimilating SMAP (Soil Moisture Active Passive) brightness temperatures (TBs) in CaLDAS upon the estimation of the soil moisture state and the subsequent NWP forecasts.

Experimental Set-up:
- **Assimilation time period:** June-August 2015
- **Evaluation time period:** July-August 2015
- **Domain:** North America at ~10km grid spacing
- **Forward Model:** Community Microwave Emission Modelling Platform (CMEM)
- **SMAP:** SMAP Level 1B Radiometer Half-Orbit Time-Ordered Brightness Temperatures (Version 3)

<table>
<thead>
<tr>
<th>EXPERIMENT</th>
<th>Observations Assimilated</th>
<th>Temporal Frequency</th>
<th>Control Variables</th>
<th>Land - Surface Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>SCREEN</td>
<td>TT, TD @2m</td>
<td>3hr</td>
<td>mean surface temp. surface and root zone soil moisture</td>
<td>ISBA</td>
</tr>
</tbody>
</table>
| SMAP-ISBA | TT, TD @2m
SMAP (TBs) | 3hr | mean surface temp. surface and root zone soil moisture | ISBA |
| SMAP-SVS | TT, TD @2m
SMAP (TBs) | 3hr | surface temperatures and soil layers 1-4 (depth=5,10,20,40cm) | SVS |
Soil Moisture Verification: Sparse Networks
Impact of SMAP TBs & Land Surface Schemes

Superficial Soil Moisture

Correlation

Unbiased RMSE

Root Zone Soil Moisture

Correlation

Unbiased RMSE
NWP Forecast Verification

Screen-Level (2m) Temperature (TT) and Dew point Temperature (TD) and Soil Moisture Verification against Sparse Networks

July-August 2015

48 hr forecasts every 48hrs, initialized using CaLDAS analysis at 00Z (31 cases)

<table>
<thead>
<tr>
<th>EXPERIMENT</th>
<th>Obs. Assimilated</th>
<th>Land Sfc Model*</th>
<th>Control Variables</th>
</tr>
</thead>
<tbody>
<tr>
<td>SCREEN</td>
<td>TT, TD @2m</td>
<td>ISBA</td>
<td>mean surface temp. surface and root zone soil moisture</td>
</tr>
<tr>
<td>SMAP-SVS</td>
<td>TT, TD @2m</td>
<td>SVS</td>
<td>surface temperatures and soil layers 1-4 (depth=5,10,20,40cm)</td>
</tr>
<tr>
<td></td>
<td>SMAP (TBs)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Note: Land surface scheme (ISBA or SVS) in forecast same as in CaLDAS experiment

Verification against:
SYNOP stations
0.1°C precision for Temperature
Temporal resolution of 3hrs
SCREE+ISBA vs SMAP+SVS

Temperature Biases (F - O) : July - August 2015, 00Z Runs

CaLDAS-SCREEN
CaLDAS-SVS-SMAP

90% confidence interval based upon block bootstrapping
SCREEN+ISBA vs SMAP+SVS
Temperature: July-August 2015, 00Z Runs

CaLDAS SCREEN
CaLDAS-SVS-SMAP

Canada

USA
SCREEN+ISBA vs SMAP+SVS
Temperature (TT) STDE: July - August 2015, at 00Z day 2 (24Z) ~mid/late afternoon

- SCREEN+ISBA better
- SMAP+SVS better

Localized problem areas... Central USA for example...
SVS and Vegetation

- Assuming that soil moisture is well specified, the vegetation becomes key in correctly simulating latent heat fluxes.

- **Current hypothesis**: soil moisture is well initialized and simulated in SVS, but errors in evapotranspiration lead to errors in fluxes, which lead to low-level air temp. and humidity errors.

- **Ongoing tests to:**
 - Improve parametrization of stomatal resistance (one of the main factors controlling vegetation latent heat fluxes)
 - Fine-tune vegetation characteristics (e.g., root depth) in problem areas using soil moisture and screen-level errors for guidance given lack of data.

SVS stomatal resistance tests

- **USA Southeast TD 2m STDEs**

Note: Land surface model changes affect both CaLDAS assimilation cycle and forecasts.
SUMMARY

• Assimilating SMAP TBs leads to significant improvements in temporal correlations for both w_g and w_2 when compared to the use of screen-level parameters alone. Unbiased RMSEs are also improved.

• Using a more complex land surface model (SVS vs. ISBA) further improves the correlations and unbiased RMSEs.

• Better soil moisture (and land surface temperature) at start time generally leads to improved short-range (0-48hr) NWP forecasts (TT,TD) ... but a few problem areas persist... ongoing work to address the areas where we see a deterioration in screen-level (2m) scores

• Ongoing tests focused on simulation of stomatal resistance and specification of vegetation characteristics (e.g., roots) in SVS. Modification to SVS impacts both the CaLDAS analysis cycle and the NWP forecasts.

• Irrigation (un-modeled processes)

• Next Step: Global Domain

NWP tests were performed over North America where the screen-level data coverage can be considered good. Anticipate larger impacts over more data sparse regions.
Thank you for your attention
(Nothing like SMAP and Vegetation...)

https://blog.junshin.com/lynnrn.do
CaLDAS-SMAP Experimental Setup

RDPS FCST

PERTURBED ATM FORCING

SMAP OBS

Analyzed Soil Moisture

48-h forecast
TB "Downscaling" Strategy; Within EnKF algorithm

- Observation: TB at 40 km.
- Each sub tile \(T_i \) seems the same innovation:
 \[
 TB(SMOS) = \frac{1}{16} \sum_{i=1}^{16} TB_i
 \]

- This innovation needs to be distributed to each sub tile.
- Correlations between the fine-scale (10 km) model states and the coarse-scale (40 km) observation predictions downscales the coarse-scale innovations.

\[
BH^T \cong \text{Cov}[\left(w_g, w_2\right); TB]; HBH^T \cong \text{Cov}[TB, TB]
\]