

Assimilation of L-band Soil Moisture Brightness Temperatures (TB) into the Soil, Vegetation and Snow (SVS) Scheme within the Canadian Land Data Assimilation System (CaLDAS)

Marco L. Carrera¹, Bernard Bilodeau¹, Maria Abrahamowicz¹, Stephane Bélair¹, Albert Russell¹, and Xihong Wang²

(1) Meteorological Research Division, (2) Meteorological Service of Canada

Environment and Climate Change Canada (ECCC)

8th SMAP Cal/Val Workshop June 20-22, 2017 University of Massachusetts, Amherst MA

Soil Moisture & Numerical Weather Prediction (NWP)

Soil moisture affects:

- Land surface evaporation and evapotranspiration
- Sensible and latent heat fluxes (partition of net radiation)
- Evolution and structure of the boundary layer
- Formation of clouds, precipitation (convection) and weather systems

Common approach in NWP:

• Infer soil moisture from short-range forecast errors in screen-level (2m) temperature and humidity (so-called "pseudo-analysis" of soil moisture)

Issues:

- 2m observations have highly variable spatial and temporal density
- "Tunes" soil moisture of the model to provide accurate fluxes, less focus on improving soil moisture itself

Goal at ECCC:

Improve both (1) the initialization and (2) modeling of soil moisture to improve:

- 1. Standard NWP variables (Air temp., humidity, precipitation)
- 2. Soil moisture (and related variables: runoff, drought and flood conditions etc.) (** Increasing focus on environmental prediction)

Canadian Land Data Assimilation System (CaLDAS)

- Ensemble Kalman Filter (EnKF) (24 members)
- Observations assimilated:
 - Screen-level Temp and Humidity, Snow depth,
 **NEW: SMAP L-band TBs
- Analyzed variables:
 - Land surface temperature, snow depth,
 Soil Moisture (superficial, and root zone)
- Background/First guess:

Off-line land surface prediction system with <u>2 choices of land surface scheme</u>:

ISBA: Interaction between Surface, Biosphere, Atmosphere

- One energy budget for land surface
- Force-restore equation for soil moisture + 2 soil layers

or

SVS: Soil Vegetation and Snow (**New at ECCC)

- Separate energy budget for bare ground, veg. and snow
- Vertical soil water diffusion + 7 soil layers
- Updated parametrizations for snow, runoff, stomatal resistance etc.

New Land Surface Tiling Approach In SVS

Snow over Low Vegetation

Vegetation

(GEM: Global Environmental Multiscale)

Snow under

High Vegetation

update ensemble

members xi

observation

EnKF

integrate

Snow over

Bare Ground

ensemble of states and compute

sample covariance P

Carrera et al., 2015: The Canadian Land Data Assimilation System (CaLDAS): Description and Synthetic Evaluation Study Alavi et al., 2016: Warm Season Evaluation of Soil Moisture Prediction in the Soil, Vegetation, and Snow (SVS) Scheme Husain et al , 2016: The Multibudget Soil, Vegetation, and Snow (SVS) Scheme for Land Surface Parameterization: Offline Warm Season Evaluation

Caldas and **SMAP**:

Goal:

Evaluate the impact of assimilating SMAP (Soil Moisture Active Passive) brightness temperatures (TBs) in CaLDAS upon the estimation of the soil moisture state and the subsequent NWP forecasts.

Experimental Set-up:

Assimilation time period: June-August 2015

Evaluation time period: July-August 2015

Domain: North America at ~10km grid spacing

<u>Forward Model</u>: Community Microwave Emission Modelling Platform (CMEM)

SMAP: SMAP Level 1B Radiometer Half-Orbit Time-Ordered Brightness Temperatures (Version 3)

EXPERIMENT	Observations Assimilated	Temporal Frequency	Control Variables	Land - Surface Model
SCREEN	TT, TD @2m	3hr	mean surface temp. surface and root zone soil moisture	ISBA
SMAP-ISBA	TT, TD @2m SMAP (TBs)	3hr	mean surface temp. surface and root zone soil moisture	ISBA
SMAP-SVS	TT, TD @2m SMAP (TBs)	3hr	surface temperatures and soil layers 1-4 (depth=5,10,20,40cm)	SVS

Soil Moisture Verification Sparse Networks

AGDMN : Agriculture Ground Drought Monitoring Network
SCAN : USDA Soil Climate Analysis Network
USCRN : US Climate Reference Network

Soil Moisture Verification : Sparse Networks

Impact of SMAP TBs & Land Surface Schemes

NWP Forecast Verification

Screen-Level (2m) Temperature (TT) and Dew point Temperature (TD) and Soil Moisture Verification against Sparse Networks

July-August 2015

48 hr forecasts every 48hrs, initialized using CaLDAS analysis at 00Z (31 cases)

EXPERIMENT	Obs. Assimilated	Land Sfc Model*	Control Variables
SCREEN	TT, TD @2m	ISBA	mean surface temp. surface and root zone soil moisture
SMAP-SVS	TT, TD @2m SMAP (TBs)	SVS	surface temperatures and soil layers 1-4 (depth=5,10,20,40cm)

*Note: Land surface scheme (ISBA or SVS) in forecast same as in CaLDAS experiment

Soil Moisture Forecast Verification : Sparse Network Correlation : July – August 2015

SCREEN+ISBA vs SMAP+SVS

Temperature Biases (F - 0): July - August 2015, 00Z Runs

confidence 90 %

SCREEN+ISBA vs SMAP+SVS

Temperature STDE: July - August 2015, 00Z Runs

confidence 90 %

SCREEN+ISBA vs SMAP+SVS

Temperature (TT) STDE: July - August 2015, at 00Z day 2 (24Z) ~mid/late afternoon

Localized problem areas... Central USA for example...

SVS and Vegetation

- Assuming that soil moisture is well specified, the vegetation becomes key in correctly simulating latent heat fluxes
- Current hypothesis: soil moisture is well initialized and simulated in SVS, but errors in evapotranspiration lead to errors in fluxes, which lead to low-level air temp. and humidity errors

 Note: Land surface model changes
- Ongoing tests to:
 - Improve parametrization of stomatal resistance

 (one of the main factors controlling vegetation latent heat fluxes)
 - Fine-tune vegetation characteristics (e.g., root depth) in problem areas using soil moisture and screen-level errors for guidance given lack of data

SVS stomatal resistance tests

affect both CaLDAS assimilation

SUMMARY

- Assimilating SMAP TBs leads to significant improvements in temporal correlations for both w_g and w₂ when compared to the use of screenlevel parameters alone. Unbiased RMSEs are also improved.
- Using a more complex land surface model (SVS vs. ISBA) further improves the correlations and unbiased RMSEs.
- Better soil moisture (and land surface temperature) at start time generally leads to improved short-range (0-48hr) NWP forecasts (TT,TD) ... but a few problem areas persist... ongoing work to address the areas where we see a deterioration in screen-level (2m) scores
- Ongoing tests focused on simulation of stomatal resistance and specification of vegetation characteristics (e.g., roots) in SVS. Modification to SVS impacts both the CaLDAS analysis cycle and the **NWP** forecasts.
- Irrigation (un-modeled processes)
- Next Step: Global Domain

**NWP tests were performed over North America where the screen-level data coverage can be considered good. Anticipate larger impacts over more data sparse regions.

Thank you for your attention (Nothing like SMAP and Vegetation...)

CaLDAS-SMAP Experimental Setup

TB "Downscaling" Strategy; Within EnKF algorithm

- Observation: TB at 40 km.
- Each sub tile (T_i) seems the same innovation: $TB(SMOS) \frac{1}{16} \sum_{i=1}^{16} TB_i$
- This innovation needs to be distributed to each sub tile.
- Correlations between the fine-scale (10 km) model states and the coarse-scale (40 km) observation predictions downscales the coarse-scale innovations.

