

Modeling L-band UAVSAR data through dielectric changes in soil moisture and vegetation over shrublands

June 21, 2017

Seung-bum Kim¹, Motofumi Arii², Thomas Jackson³ ¹Jet Propulsion Laboratory, California Institute of Technology ²Mitsubishi Electric Corporation, Kanagawa, Japan, ³USDA ARS

Thanks to A. Colliander, M. Cosh, N. Das, B. Hornbuckle, UC Davis, & HQ

© 2017. All rights reserved.

Context & Motivation

- UAVSAR soil moisture retrieval (NISAR ?)
- Applicability to Sentinel radar-only retrieval
- California Central Valley shrubland (subsidence?)

UAVSAR Central Valley Observations

year	10	2011													2012		2014					
month	6	5			6		7		8		10	11		5	6	11	1	2	4	5	6	8
day	29	19	20	1	16	30	18	12	29	19	11	2	14	29	19	25	17	11	1	28	20	14
UAVSAR					C.																	
soil moisture																						
vegetation																						

dB

UAVSAR Central Valley Observations

Science Questions

- Soil moisture (a) in situ samples
 - California's wet winter and dry summer
- Plant water fraction (b) destructive samples
 - Branch: temporally static
 - Leaf: wet summer, dormant winter \rightarrow
- Vegetation water content (c) destructive samples
 - Leaf VWC is dominant
 - Branch VWC is temporally static
- UAVSAR HH or VV (d)
 - Correlates highly with soil moisture
 - Correlates poorly with VWC \rightarrow
- UAVSAR HH/VV (e)
 - HH > VV
 - Anti-correlates with soil moisture
- Questions to investigate
 - HH > VV \rightarrow vegetation has strong effect
 - BUT HH (and VV) correlates with soil moisture
 - Will explain through modeling

UAVSAR Central Valley Observations

Sigma0 vs Mv (or VWC)

Strategy of Scattering Modeling:

2017 AGU

- 7 -

When VWC is modelled by changing water fraction in leaf, the model simulates the observation within 0.8 dB over the entire seasons/multi-years

Modelled Mechanisms

- Total HH is due to double bounce and by trunk – responding to soil moisture
- Total VV is due to surface scattering – Leaf (dots) contributons are always minor

HH/VV decreaseas as SM increases.

signature of soil surface

– HH > VV → vegetation has strong effect
– HH (and VV) correlates with soil moisture through double bounce (surface)

Retrieval

- Datacube time-series retrieval:
 - Ub-rmse = 0.025 m3/m3, meane = 0.04 m3/m3, correlation 0.86
- Change index
 - Correlation: 0.89

Summary

- Shrubland L-UAVSAR simga0 varied by 3 dB seasonally and
 - Correlated strongly with soil moisture (despite VWC changes)
- Modelling was
 - Successfully when VWC is controlled by leaf dielectric
 - Not well when VWC changes by geometry
- S0 changes were due to soil moisture changes (leaf VWC insignificant)
 - Double bounce (HH) and surface scattering (VV) are major terms
 - HH/VV decreases with soil moisture (consistent with data)
- Retrieval
 - ub-rmse = 0.025 m3/m3, meane = 0.04 m3/m3, correlation 0.86
- Continued demo that
 - forward modeling is successful
 - the time-series datacube retrieval works.

[S. Kim, M. Arii, T. Jackson, Modeling L-band synthetic aperture radar data through dielectric changes in soil moisture and vegetation over shrublands, J. Selected Topics Applied Earth Obs. Remote Sensing, DOI: 10.1109/JSTARS.2017.2741497, 2017]