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Summary

Forest modeling at L band: motivations, selected approach, 

comparisons with experimental data. 

Application to spaceborne signatures: simplified input data set, 

calibration of a first order RT model, main outcomes, critical 

issues.

The experience of SMOS: current 2-parameter retrieval 

algorithm, results obtained by a 3-parameter algorithm, 

currently retrieved vegetation optical depth (VOD) and soil 

moisture (SM) over forests.

Possible active/passive instruments synergy.

Suggestions for future work and experiments.



Modeling: motivations

Science;

Need to create a synthetic data base of forest emission data at 

L band, since few measurements were available;

Need to get an insight into complex forest issues: multiple 

scattering, different roles of forest components (trunks, 

branches, leaves, litter) for a given biomass.



Modeling: selected approach

The model developed at Tor Vergata University adopted the 

discrete approach, mostly used for radar studies, in the 

passive version.

Considers the geometry of different forest components, and 

multiple scattering.



Basic aspects

(Ferrazzoli and Guerriero 1996)

• Is based on radiative transfer theory;

• Adopts a discrete approach to represent forest

elements;

• Combines contributions of forest elements by a

matrix algorithm which includes multiple

scattering;

• Combines vegetation scattering with reflection

and scattering from the soil;

• Computes the emissivity of the whole canopy,

soil and single components.

Crown (branches and leaves)

Trunks

Soil 

Includes the litter as a dielectric layer, with reflections at upper and lower 

interfaces (Della Vecchia et al., 2007)

Modeling: selected approach



Modeling: Litter characterization (1)
Litter is described as a continuous layer made by a mixture of air

and dielectric material.

Empirical formulas relate: 

•Litter biomass to LAI (through litter-fall estimates by Cannell, 1982)

•Litter thickness to biomass (Putuhena et al. 1996)

•Litter moisture to soil moisture (Bray experiment)

Permittivity of dielectric material is computed by means of vegetation

permittivity routine

Permittivity of litter mixture is computed by “refractive” mixture formula (Ulaby et

al. 1986)

Soil

Litter



Modeling: Litter characterization (2)

Steps

•Computation of reflectivity for soil+litter layer composite, using a coherent

multiple reflection model (Ulaby et al. 1982), as a function of layer

thickness

•Smoothing, to account for spatial inhomogeneities in the horizontal plane

•Computation of the permittivity of an equivalent uniform half-space with

flat interface

•Introduction of roughness

•Computation of bistatic scattering coefficient (by IEM)

•Combination with standing vegetation contributions



Required Inputs:

 Soil moisture

 Soil roughness

 Litter coverage

 Tree density (ha^-1)

 Distribution of dimensions for trunks, branches, leaves

 Distribution of orientations for trunks, branches, leaves

 Permittivity of trunks, branches, leaves

Available by:

 Direct measurements (in case of campaigns)

 Allometric equations

 Literature data

Modeling: Required input data



Previous comparisons with experimental data

The model was tested vs. ground-based and airborne 

measurements collected over various forests

• Les Landes (France), Pine (Della Vecchia, P. Ferrazzoli, J.-P. Wigneron, 

J. Grant, IEEE GRS Letters, 2007)

• Tuscany (Italy), Broadleaf (A. Della Vecchia, P. Ferrazzoli, L. Guerriero, 

R. Rahmoune, S. Paloscia, S. Pettinato, E. Santi,  IEEE TGRS, 2010)

• Finland, mixed (R.Rahmoune, A.Della Vecchia, P.Ferrazzoli, 

L.Guerriero, F.Martin-Porqueras,  Proc. IGARSS 2009)

• Australia, Eucalyptus (R. Rahmoune, P. Ferrazzoli, J. P. Walker, J. P. 

Grant,  Proc. MICRORAD  2010)



Application to spaceborne signatures

 Spaceborne missions are finalized to retrieve physical 
parameters, particularly soil moisture at L band.

 Retrieval algorithms are based on forward models and 
retrieval techniques

 1st order Radiative Transfer (RT) model is used for soil 
covered by vegetation

 There is need to relate RT parameters to variables 
available at large scale.

 We selected Leaf Area Index (LAI).



Generation of the input data set

 LAI from available data bases (e.g. ECOCLIMAP)

 Empirical relationships between LAI and Leaf dry 

biomass (Bartelink, 1997).

 Typical values of vegetation moisture and permittivity 

(from active remote sensing literature)

 Distributions of dbh (diameter at breast height)

 Single tree allometric equations for different forest 

kinds (Jenkins et al., 2003)



 Empirical relationships between LAI and Leaf dry 

biomass (Bartelink, 1997).

 Relationships between litter biomass (“litter-fall”) and 

leaf dry biomass (Cannel, 1982). (High variability related 

to climatic conditions, to be investigated)

 Relationships between litter thickness and litter biomass 

(Yoshinobu et al., 2004).

Generation of the input data set (litter)



Parametric simulations  for deciduous forests, 

in full leaf development
Emissivity as a function of SMC at L band

LAI=1

LAI=2

LAI=3

LAI=4

With litter

Without litter



LAI

(1 to 6)

LAI

(1 to 6)

Examples of emissivity trends

Total emissivity and components vs. angle, L band, V

polarization SMC = 10%, Broadleaf forests.



Examples of transmissivity trends

Transmissivity of components and total vs. angle, L band,

V polarization, Broadleaf forests.

LAI

(1 to 6)

LAI

(1 to 6)



Fitting the parameters of a simple RT model

Model outputs have been used to fit the albedo and the optical 

depth of an “equivalent” 1st order RT model.

Steps

• A soil roughness hstd (1.5 cm) was selected

• The roughness factor h of the simple model was set by 

imposing the surface emissivity of the simple model to be 

equal to the surface emissivity of the physical model

• The physical model was run at both polarizations, an 

angular range 5°-55° and a SMC range 5%-30%

• The simple model was run for the same conditions

• ω and τ were selected in order to have the minimum rms 

difference between outputs of the two models 



Fitting the parameters of a simple RT model

The estimate of 
ω is more 
reliable for 
dense forests

ω

ω=0.08



Estimate of ω and τ 

a)In full leaf development (LAI = LAImax)
LAI=fF LAIF + fV LAIV
τ = fF τF + fV τV

τV = bV LAIV (herbaceous vegetation)
Running the theoretical model and fitting the outputs to
RT-0:
τF= τFW (wood) + τFL (leaf) + τL (litter) = bF LAIF
ω = 0.08

b) In other seasons (LAI < LAImax)
τFW (wood) and τL (litter) unchanged
τFL (leaf) and τV (herbaceous vegetation) related to LAI
ω = 0.08



Comments

Important outcomes from preliminary modeling work 

(confirmed by real spaceborne signatures):

• The most important effects depend on branches;

• Seasonal variations are small;

• Maximum LAI is an important parameters, at least at

continental scale;

• Reasonable estimate of optical depth, at least for broadleaf

forests. 



Comments

However, problems were found:

• The procedure suffers several approximations, since the complexity of 

the forest cannot be represented by the single LAI max parameter

(particularly for needleleaf forests);

• LAI is also contributed by understorey;

• At large scale inhomogeneity effects must be considered;  

• Litter effects are difficult to be predicted, and strongly depend on 

climate;

• Most of experiments and model tests were limited to Boreal regions of 

Europe and US.

Overall, after some years of spaceborne data availability:

• Coefficients relating VOD to LAImax were reduced (by a 0.6-0.8 factor)

• The most appropriate albedo was 0.06. 



The SMOS SM L2 Algorithm

An RT-0 forward model is run for each angle and

for each land cover of SMOS pixels. Inputs: land

cover, ECMWF, ECOCLIMAP

Outputs are aggregated for SMOS pixels, and

compared with measurements.

Simulated TB’s are compared vs. measured TB’s.

An iterative procedure is started to minimize the “cost

function”.

SM and optical depth of the dominant cover type

(low vegetation or forest) are retrieved as outputs of

this iterative procedure (2P algorithm).



The forward model for forests

RT-0 inputs for soil: SM (first guess), h

RT-0 inputs for vegetation: τ (first guess), ω

h = 0.3 (fixed)

SM by ECMWF

τ (first guess) and ω are obtained using the 

already indicated procedure. 



The 3P algorithm

A 3-parameter retrieval exercise was made off-line. 

In this case SM, τ and ω were simultaneously

retrieved. This method is not proposed as

operational, since produces unstable solutions for

mixed pixels.

However, it provided useful results when the forest

fraction (FFO) was close to 100%.

Four 8-day intervals of 2011 and 2012 were

selected. 



Forest 

fraction 

Time 

interval

Number τ mean τ std ω mean ω std

90%-95% February 

2011

9766 0.88 0.26 0.055 0.025

95%-100% February 

2011

32920 0.94 0.23 0.064 0.019

90%-95% July 2011 10379 0.90 0.25 0.054 0.024

95%-100% July 2011 33905 0.96 0.22 0.062 0.018

90%-95% November 

2011

10365 0.87 0.26 0.051 0.023

95%-100% November 

2011

34316 0.93 0.22 0.059 0.018

90%-95% February 

2012

10145 0.91 0.27 0.051 0.024

95%-100% February 

2012

33806 0.98 0.23 0.060 0.019

3-parameter retrieval results over Pantropical

forests (latitude <20°), for four 8-day time intervals



Forest

fraction

Continent Number τ mean τ std ω mean ω std

90%-95% South 

America

5815 0.92 0.25 0.057 0.027

95%-100% South 

America

24446 0.98 0.21 0.064 0.017

90%-95% Africa 3914 0.79 0.25 0.049 0.042

95%-100% Africa 7463 0.81 0.23 0.060 0.038

3-parameter retrieval results over two continents for

8 days in July 2011



Scatterplot of retrieved ω vs. retrieved τ. July 2011, 

Pantropical forests, Forest fraction > 95%

ω

τ

0.06



July 2011, Pantropical forests, Forest fraction>95%

ω mean vs. τ

0.06

ω std vs. τ

N of samples vs. τ



Boreal forests of North America with Forest fraction >95%

Needleleaf (green)

Broadleaf (blue)



Broadleaf forests of North America, Forest fraction>95%

July                                            November

ω mean vs. τ

ω std vs. τ

N of samples vs. τ



Needleleaf forests of North America, Forest fraction>95% 

July                                            November

ω mean vs. τ

ω std vs. τ

N of samples vs. τ



Comments about albedo results

For tropical forests with FFO>95% the value ω=0.06 is
confirmed, on average, but with a slight decreasing

trend vs. τ

For Boreal forests, similar values are observed in July,
but there is a decrease in November for needleleaf.

The std of ω decreases when increasing τ



Analysis of VOD and SM retrievals
obtained by current (620) SMOS L2 

algorithm

SM: main objective of the mission.

VOD (vegetation optical depth τ) also important:

• To improve the performance of the algorithm;

• To achieve a new product, with applications to
monitoring of carbon storage and exchange.



Comparison between VOD and Forest

Height data base

Simard et al., (2009): Estimated by ICESat GLAS over lidar tracks, with

MODIS ancillary data to fill cross track Lidar gaps. The extention is obtained

using Random Forest Model.

The database also provides the RMSE computed comparing direct Lidar

measurements and model predictions. We only selected data with RMSE <

5m.



Comparison between optical thickness and 

a novel AGB database

Pantropical AGB database by Avitabile et al. (2015): Fusion of previous 

AGB maps (Baccini et al., Saatchi et al.) reported an RMSE 15 - 21 % 

lower than that of the inputs maps and unbiased estimates. 



South America (Forest fraction > 70%):

SMOS τ

(July

2015)

AMSR2 τ

(July

2015)

Forest 

height 

Forest  

biomass 



Africa (Forest fraction > 70%):

Forest 

height 
Forest  

biomass 

SMOS τ

(July

2015)

AMSR2 τ

(July

2015)



Comparison between VOD (SMOS and AMSR2) and 

forest parameters (par.). Average July 2015

τ = b1 par. + b2

par.

Forest height by Simard et al. (2011)

AGB by Avitabile et al. (2015)

τ vs. par. correlation (R2)

R2 

SMOS

b1 

SMOS

b2 

SMOS

R2

AMSR2

b1 

AMSR2

b2 

AMSR2

Forest Height 

South America

0.72 0.022 0.31 0.55 0.016 0.63

Forest Height 

Africa

0.67 0.020 0.29 0.64 0.017 0.64

Biomass

South America

0.62 0.002 0.42 0.34 0.001 0.77

Biomass

Africa

0.57 0.002 0.45 0.45 0.001 0.83

Test:



Seasonal maps (2013)

SMOS τ AMSR2 τ

JANUARY JANUARY

JULY JULY



SMOS τ AMSR2 τ

Seasonal maps (2015)

JANUARY

JULY

JANUARY

JULY



Conclusions about VOD Investigations

 Comparison between VOD and two databases including the novel AGB

dataset (Avitabile et al, 2015).

 Linear regression analysis with different forest parameter registers an

overall better performance of L band

 b2 coefficient represents the intercept of linear regression due to

contribution of understory and short trees. C band shows higher b2 as

expected

 SMOS VOD shows temporal stability, particularly in tropical forests

Overall, SMOS optical depth can be a possible new contributor

data source for estimating forest biomass (or wood volume) and

its changes at global scale.

Reference: Vittucci et al, RSE, 2016



SM retrieval results (8-day average maps)

8 days February 2011 8 days July 2011 Forest fraction



Analysis of  V620 TB’s and retrievals on 

forest nodes of the Scan-Snotel Network

• For each SCAN-SNOTEL node, the closest SMOS node was 

taken in order to make the comparison.

• Multitemporal trends of 2015 have been plotted for:

Retrieved SM;

Measured SM;

Retrieved  τ ;

Average TBV in a 37.5°-42.5° range;

Average TBH in a 37.5°-42.5° range.



Node 2179: Sudduth Farms



Node 2089: Reynolds 

Homestead



Node 2003: Wabeno 1



Node 1011: MF Nooksack



Problems

• Underestimation of SM at the highest latitudes (forward
model: ω?, soil permittivity?).

• Underestimation of SM or retrieval failure for forest fractions
in a 70%-90% range (land cover, simulation of TB in not
retrieved fraction).

• Missing or suspicious ground measurements (e.g. SM=0 for
long time intervals). One sample per SMOS pixel is not
sufficient.



Retrieval is difficult at higher latitudes and/or 

lowest temperatures, not necessarily below

freezing values

Investigations in progress:

• Changes in wood permittivity;

• Changes in soil permittivity, for a given SM (organic

soils);

• Deeper and more stable litter;

• Higher differences between canopy and soil

temperatures.



Active-Passive sinergy at L band: Model simulations

(Guerriero et al, JSTARS 2016) 



SMAPEX 2011

Airborne campaign over the Gillenbah Forest

(Australia) with PLMR radiometer and PLIS 

scatterometer. 

Active-Passive Experimental data

Forests

Crops

Bare Soil



AQUARIUS AND SMOS

σ°HH and eH data from Aquarius (beam 3)  are 

combined with SMOS L3 Vegetation Optical Depth 

(VOD) and Soil Moisture (SM), for the closest pixels.
All orbits on 1, 2, 3 July 2012.  Pixels with RFI were discarded.



Simulated sensitivities to SM 

Brightness Temperature                       Backscattering coefficient



L band radar:

Useful to precisely identify forest cover,

but

poor dynamic range related to SM variations under 

forests.

Further investigations with L and C band are in 

progress:
SIMULATING L/L-BAND AND C/L-BAND ACTIVE-PASSIVE 

COVARIATION OF CROPS WITH THE TOR VERGATA

SCATTERING AND EMISSION MODEL FOR A SMAP-

SENTINEL 1 COMBINATION 

M. Link, D. Entekhabi, T. Jagdhuber, P. Ferrazzoli, L. Guerriero, 

M. Baur, R. Ludwig

Presentation at IGARSS 2017



Suggestions for future experiments

• Select pixels at different latitudes;

• Cover SM measurements with sufficient sampling;

• Consider the fundamental importance of branches;

• Investigate seasonal variations of wood permittivity

and litter properties;

• Monitor vertical distribution of temperature.


